234
Views
0
CrossRef citations to date
0
Altmetric
Articles

An account of the occurrence of residues from veterinary drugs and contaminants in animal-derived products: a case study on Brazilian supply chains

ORCID Icon, , &
Pages 365-384 | Received 30 Oct 2023, Accepted 01 Feb 2024, Published online: 12 Feb 2024

References

  • Adegbeye MJ, Reddy PRK, Chilaka CA, Balogun OB, Elghandour MMMY, Rivas-Caceres RR, Salem AZM. 2020. Mycotoxin toxicity and residue in animal products: prevalence, consumer exposure and reduction strategies – A review. Toxicon. 177:96–108. doi:10.1016/j.toxicon.2020.01.007.
  • Alkmim Filho JF, Germano A, Dibai WLS, Vargas EA, Melo MM. 2014a. Assessment of heavy metal residues in Brazilian poultry and swine tissue. Arq Bras Med Vet Zootec. 66(2):471–480. doi:10.1590/1678-41626990.
  • Alkmim Filho JF, Germano A, Dibai WLS, Vargas EA, Melo MM. 2014b. Heavy metals investigation in bovine tissues in Brazil. Food Sci Technol. 34(1):110–115. doi:10.1590/S0101-20612014005000013.
  • Almeida A, Cunha A, Gomes NCM, Alves E, Costa L, Faustino MAF. 2009. Phage Therapy and Photodynamic Therapy: low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants. Mar Drugs. 7(3):268–313. doi:10.3390/md7030268.
  • Arisseto-Bragotto AP, Feltes MMC, Block JM. 2017. Food quality and safety progress in the Brazilian food and beverage industry: chemical hazards. Food Qual Saf. 1(2):117–129. doi:10.1093/fqsafe/fyx009.
  • Aroeira CN, Feddern V, Gressler V, Molognoni L, Daguer H, Dalla Costa OA, de Lima GJMM, Contreras-Castillo CJ. 2019. Determination of ractopamine residue in tissues and urine from pig fed meat and bone meal. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 36(3):424–433. doi:10.1080/19440049.2019.1567942.
  • Bacanlı M, Başaran N. 2019. Importance of antibiotic residues in animal food. Food Chem Toxicol. 125:462–466. doi:10.1016/j.fct.2019.01.033.
  • Barros A, Novo CS, Feddern V, Coldebella A, Scheuermann GN. 2021. Determination of Eleven Veterinary Drugs in Chicken Meat and Liver. Appl Sci. 11(18):8731. doi:10.3390/app11188731.
  • Bayou K, Haile N. 2017. Review on Antibiotic Residues in Food of Animal Origin: economic and Public Health Impacts. Appl J Hyg. 6(1):01–08. doi:10.5829/idosi.ajh.2017.01.08.
  • Berends BR, van den Bogaard AEJM, Van Knapen F, Snijders JMA. 2001. Veterinary public health: human health hazards associated with the administration of antimicrobials to slaughter animals. Vet Q. 23(1):2–10. doi:10.1080/01652176.2001.9695068.
  • Bortolotte AR, Daniel D, Reyes FGR. 2021. Occurrence of antimicrobial residues in tilapia (Oreochromis niloticus) fillets produced in Brazil and available at the retail market. Food Res Int. 140:109865. doi:10.1016/j.foodres.2020.109865.
  • Brasil 1999. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n. 42, de 20 de dezembro de 1999. Altera o Plano Nacional do Controle de Resíduos em Produtos de Origem Animal-PNCRC e os Programmeas de Controle de Resíduos em Carne – PCRC, Mel – PCRM, Leite – PCRL e Pescado - PCRP. Diário Oficial da União, Brasília, DF. Available from: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-animal/plano-de-nacional-de-controle-de-residuos-e-contaminantes/documentos-da-pncrc/instrucao-normativa-sda-n-o-42-de-20-de-dezembro-de-1999.pdf/view. Accessed in: 10 apr 2023.
  • Brasil 2006. Casa Civil. Lei n° 11.346, de 15 de setembro de 2006. Cria o Sistema Nacional de Segurança Alimentar e Nutricional – SISAN com vistas em assegurar o direito humano à alimentação adequada e dá outras providências. Diário Oficial da União, Brasília, DF. Available from: http://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2006/Lei/L11346.htm. Accessed in: 20 dec 2023.
  • Brasil 2023. Anuário dos programmeas de controle de alimentos de origem animal do DIPOA. Ministério da Agricultura e Pecuária. Secretaria de Defesa Agropecuária. Departamento de Inspeção de Produtos de Origem Animal. Coordenação Geral de Programmeas Especiais. Volume 9. Ano 9. Available from: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-animal/arquivos-publicacoes-dipoa/copy4_of_AnuriodosProgrammeasdeControledeAlimentosdeOrigemAnimalVolume920232.pdf/view. Accessed in: 20 dec 2023.
  • Bryden WL. 2007. Mycotoxins in the food chain: human health implications. Asia Pac J Clin Nutr. 16(S1):95–101.
  • Ciminelli VST, Gasparon M, Ng JC, Silva GC, Caldeira CL. 2017. Dietary arsenic exposure in Brazil: the contribution of rice and beans. Chemosphere. 168:996–1003. 0045. doi:10.1016/j.chemosphere.2016.10.111.
  • Codex Alimentarius 2014. Guidelines for the design and implementation of national regulatory food safety assurance programmeme associated with the use of veterinary drugs in food producing animals. CAC/GL 71-2009; Adopted 2009. Revision 2012, 2014. Codex Alimentarius Commission, Joint FAO/WHO Food Standard Programmeme, 2014; pp.1-42. Available from: https://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/. Accessed in: 20 dec 2021.
  • Corguinha APB, de Souza GA, Gonçalves VC, Carvalho CA, de Lima WEA, Martins FAD, Yamanaka CH, Francisco EAB, Guilherme LRG. 2015. Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. J Food Compos Anal. 37:143–150. doi:10.1016/j.jfca.2014.08.004.
  • Daeseleire E, Van Pamel E, Van Poucke C, Croubels S. 2017. Chemical Contaminants and Residues in Food: veterinary Drug Residues in Foods. In: Schrenk D., Cartus A. editors. Chemical Contaminants and Residues in Food. 2nd ed. Cambridge (UK): Woodhead Publishing; p. 117–153. doi:10.1016/B978-0-08-100674-0.00006-0.
  • De Brabander HF, Poelmans S, Schilt R, Stephany RW, Le Bizec B, Draisci R, Sterk SS, van Ginkel LA, Courtheyn D, Van Hoof N, et al. 2004. Presence and metabolism of the anabolic steroid boldenone in various animal species: a review. Food Addit Contam. 21(6):515–525. 2004. doi:10.1080/02652030410001687717.
  • Develos KMS, Porticos LM. 2019. Chloramphenicol Residues in Retailed Chicken in Davao City Public Markets. Adv Anim Vet Sci. 7(2):88–91. doi:10.17582/journal.aavs/2019/7.2.88.91.
  • Dowling G, O’Keeffe M, Smyth MR. 2005. Determination of robenidine in eggs by liquid chromatography with UV spectrophotometric detection. Anal Chim Acta. 539(1-2):31–34. doi:10.1016/j.aca.2005.02.063.
  • EFSA. European Food Safety Authority. 2016. Journal Malachite green in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). 14(7):4530. doi:10.2903/j.efsa.2016.4530.
  • Fink-Gremmels J. 2014. Residues in meat and meat products - Feed and Drug Residues. In: Dikeman M, Devine C, editors. Encyclopedia of Meat Sciences. 2nd ed. Washington (DC): Academic Press; p. 214–220. doi:10.1016/B978-0-12-384731-7.00238-5.
  • Ghosh A, Awal MA, Majumder S, Sikder MH, Rao DR. 2012. Arsenic residues in broiler meat and excreta at arsenic prone areas of Bangladesh. Bangladesh J Pharmacol. 7(3):10–3329. doi:10.3329/bjp.v7i3.11435.
  • Camino Feltes MM, Arisseto-Bragotto AP, Block JM. 2017. Food quality, food-borne diseases, and food safety in the Brazilian food industry. Food Qual Saf. 1(1):13–27. doi:10.1093/fqsafe/fyx003.
  • Hornish RE, Kotarski SF. 2002. Cephalosporins in veterinary medicine - ceftiofur use in food animals. Curr Top Med Chem. 2(7):717–731. doi:10.2174/1568026023393679.
  • Hosain MZ, Kabir SML, Kamal MM. 2021. Antimicrobial uses for livestock production in developing countries. Vet World. 14(1):210–221. doi:10.14202/vetworld.2021.210-221.
  • IBGE - Brazilian Institute of Geography and Statistics. 2021. IBGE Indicators - Livestock Statistics (2021). Rio de Janeiro (BR). Last update 10/09/2021. 50p. Portuguese. Available: https://biblioteca.ibge.gov.br/visualizacao/periodicos/3087/epp_pr_2021_1tri.pdf.
  • Islam MJ, Lisa AA, Reza AHMM, Reza MS, Absar Khan MN, Kamal M. 2014. Source identification and entry pathways of banned antibiotics nitrofuran and chloramphenicol in shrimp value chain of Bangladesh. Eurasia J Biosci. 8:71–83. doi:10.5053/ejobios.2014.8.0.7.
  • Kang J, Park HC, Gedi V, Park SJ, Kim MA, Kim MK, Kwon HJ, Cho BH, Kim TW, Lee KJ, et al. 2015. Veterinary drug residues in domestic and imported foods of animal origin in the Republic of Korea. Food Addit Contam Part B Surveill. 8(2):106–112. doi:10.1080/19393210.2014.1001795.
  • Kim H-J, Yu B, Feuer EJ. 2009. Selecting the number of change-points in segmented line regression. Stat Sin. 19(2):597–609.
  • Kumari B, Kumar V, Sinha AK, Ahsan J, Ghosh AK, Wang H, DeBoeck G. 2017. Toxicology of arsenic in fish and aquatic systems. Environ Chem Lett. 15(1):43–64. doi:10.1007/s10311-016-05889.
  • Lee JB, Kim HY, Jang YM, Song JY, Woo SM, Park MS, Lee HS, Lee SK, Kim M. 2010. Determination of malachite green and crystal violet in processed fish products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 27(7):953–961. doi:10.1080/19440041003705839.
  • Lees P, Pelligand L, Giraud E, Toutain P-L. 2021. A history of antimicrobial drugs in animals: evolution and revolution. J Vet Pharmacol Ther. 44(2):137–171. doi:10.1111/jvp.12895.
  • Lima CMG, Nora FMD, Seraglio SKT, Silva J. M d, Marzoque HJ, Santana RF, Verruck S, Scussel VM. 2020. Antibiotic residues in honey: a public health issue. RSD. 9(11):e1739119604. doi:10.33448/rsd-v9i11.9604.
  • Macedo F, Marsico ET, Conte-Júnior CA, Furtado LA, Brasil TF, Pereira Netto AD. 2015. Short communication: macrocyclic lactone residues in butter from Brazilian markets. J Dairy Sci. 98(6):3695–3700. doi:10.3168/jds.2014-9130.
  • Mahatmi H, Costa M, Puja IK. 2019. Residues Of Antibiotic In Chicken Meat Imported From Brazil And United States Of America Through Quarantine Stations In Dili,Timor Leste. IOSR J Agri Vet Sci (IOSR-JAVS). 12(6):39–43. doi:10.9790/2380-1206023943.
  • Marques JMG, da Silva MV. 2021. Estimation of chronic dietary intake of pesticide residues. Rev Saude Publica. 55:36. doi:10.11606/s1518-8787.2021055002197.
  • Matos WO, da Silva FLF, Sinaviwat S, Menzies EJ, Raab A, Krupp EM, Feldmann J. 2022. Wild shrimp have an order of magnitude higher arsenic concentrations than farmed shrimp from Brazil illustrating the need for a regulation based on inorganic arsenic. J Trace Elem Med Biol. 71:126968. doi:10.1016/j.jtemb.2022.126968.
  • McEvoy JDG. 2002. Contamination of animal feedingstuffs as a cause of residues in food: a review of regulatory aspects, incidence and control. Anal Chim Acta. 473(1-2):3–26. doi:10.1016/S0003-2670(02)00751-1.
  • Nascimento AF, Natel AS, Viana LM, de Melo CL, Lacerda YG, Lima MK, Esteves GF. 2021. Use of anti-tick drugs in dairy farms in the microregion of Alfenas, Minas Gerais, Brazil. Rev Bras Parasitol Vet. 30(1):e020620. doi:10.1590/S1984-29612021016.
  • Niang EMM, Assoumy AM, Teko Agbo A, Akoda K, Talnan A, Sarr SO. 2017. Chloramphenicol residue levels of marketed farm gate milk in Senegal. Food Control. 72:249–e254. doi:10.1016/j.foodcont.2016.04.023.
  • Nisha AR. 2008. Antibiotic Residues - A Global Health Hazard. Vet World. 2 (2):375–377. doi:10.5455/vetworld.2008.375-377.
  • Nonaka CKV, Oliveira AMG, Paiva CR, Almeida MP, Rezende CP, Moraes CGO, Botelho BG, Souza LF, Dias PG. 2012. Occurrence of antimicrobial residues in Brazilian food animals in 2008 and 2009. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 29(4):526–534. doi:10.1080/19440049.2011.625649.
  • Novaes SF, Schreiner LL, Silva IP, Franco RM. 2017. Residues of veterinary drugs in milk in Brazil. Cienc Rural. 47(8):e20170215. doi:10.1590/0103-8478cr20170215.
  • Olejnik M, Szprengier-Juszkiewicz T. 2007. Coccidiostats residues in poultry tissues and eggs. Med Weter. 63(12):1539–1545.
  • Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, et al. 2022. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front Microbiol. 13:962619. doi:10.3389/fmicb.2022.962619.
  • Ramos F, Santos L, Barbosa J. 2017. Nitrofuran veterinary drug residues in chicken eggs. In: Hester PY, editor. Egg innovations and strategies for improvements. Chapter 43. Cambridge (MA): Academic Press; p. 457–464. doi:10.1016/B978-0-12-800879-9.00043-3.
  • Reddy KRN, Salleh B, Saad B, Abbas HK, Abel CA, Shier WT. 2010. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Reviews. 29(1):3–26. doi:10.3109/15569541003598553.
  • Roeder RA, Garber MJ, Schelling GT. 1998. Assessment of dioxins in foods from animal origins. J Anim Sci. 76(1):142–151. doi:10.2527/1998.761142x.
  • Santos EF, Silva ÂAO, Leony LM, Freitas NEM, Daltro RT, Regis-Silva CG, Del-Rei RP, Souza WV, Ostermayer AL, Costa VM, et al. 2020. Acute chagas disease in brazil from 2001 to 2018: a nationwide spatiotemporal analysis. PLoS Negl Trop Dis. 14(8):e0008445. doi:10.1371/journal.pntd.0008445.
  • Shao Y, Wang Y, Yuan Y, Xie Y. 2021. A systematic review on antibiotics misuse in livestock and aquaculture a regulation implications in China. Sci Total Environ. 798:149205. doi:10.1016/j.scitotenv.2021.149205.
  • Silva FRN, Pereira MU, Spisso BF, Arisseto-Bragotto AP. 2021. Polyether ionophores residues in pasteurized milk marketed in the state of Sao Paulo, Brazil: occurrence and exposure assessment. Food Res Int. 141:110015. doi:10.1016/j.foodres.2020.110015.
  • Spink J, Moyer DC. 2011. Defining the public health threat of food fraud. J Food Sci. 76(9):R157–163. doi:10.1111/j.1750-3841.2011.02417.x.
  • Spisso BF, de Nóbrega AW, Marques MAS. 2009. Chemical residues and contaminants in food of animal origin in Brazil: history, legislation and actions of sanitary surveillance and other regulatory systems. Cien Saude Colet. 14(6):2091–2106. doi:10.1590/s1413-81232009000600016.
  • Valença LM, Paiva JE, Barbosa SBP, Pinheiro IO, Batista AMV, Silva MJFB, Medeiros ES. 2021. Evaluation of residues of β-lactam, sulfonamide, tetracycline, quinolone, fluoroquinolone e pyrimidine in raw milk. Food Sci Technol. 41(3):603–606. doi:10.1590/fst.23520.
  • Virginia DV. 2015. Non-Steroidal Anti-Inflammatory Drugs in Food Producing Animals. Am J Anim Vet Sci. 10(2):85–90. doi:10.3844/ajavsp.2015.85.90.
  • Wang Y, Zhang W, Mhungu F, Zhang Y, Liu Y, Li Y, Luo X, Pan X, Huang J, Zhong X, et al. 2021. Probabilistic Risk Assessment of Dietary Exposure to Chloramphenicol in Guangzhou, China. Int J Environ Res Public Health. 18(16):8805. doi:10.3390/ijerph.18168805.
  • Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA. 2017. Human exposure to organic arsenic species from seafood. Sci Total Environ. 580:266–282. 15(): doi:10.1016/j.scitotenv.2016.12.113.
  • Weber R, Herold C, Hollert H, Kamphues J, Blepp M, Ballschmiter K. 2018. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. Environ Sci Eur. 30(1):42. doi:10.1186/s12302-018-0166-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.