38
Views
0
CrossRef citations to date
0
Altmetric
Articles

Discrimination of untreated and sodium sulphite treated bean sprouts by Fourier transform infrared spectroscopy and chemometrics

, , , , &
Pages 587-600 | Received 28 Jan 2024, Accepted 05 Apr 2024, Published online: 22 Apr 2024

References

  • Aberl A, Coelhan M. 2013. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 30(2):226–233. doi: 10.1080/19440049.2012.743191.
  • Bai XL, Xiao QL, Zhou L, Tang Y, He Y. 2020. Detection of sulfite dioxide residue on the surface of fresh-cut potato slices using near-infrared hyperspectral imaging system and portable near-infrared spectrometer. Molecules. 25(7):1651. doi: 10.3390/molecules25071651.
  • Cai H, Cao G, Zhang HY. 2017. Qualitative analysis of a sulfur-fumigated Chinese herbal medicine by comprehensive two-dimensional gas chromatography and high-resolution time of flight mass spectrometry using colorized fuzzy difference data processing. Chin J Integr Med. 23(4):261–269. doi: 10.1007/s11655-015-1966-z.
  • Carlos KS, Treblin M, de Jager LS. 2019. Comparison and optimization of three commercial methods with an LC–MS/MS method for the determination of sulfites in food and beverages. Food Chem. 286:537–540. doi: 10.1016/j.foodchem.2019.02.042.
  • Chakravartula SSN, Moscetti R, Bedini G, Nardella M, Massantini R. 2022. Use of convolutional neural network (CNN) combined with FT-NIR spectroscopy to predict food adulteration: a case study on coffee. Food Control. 135:108816. doi: 10.1016/j.foodcont.2022.108816.
  • Cheng XB, Vella A, Stasiewicz MJ. 2019. Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy. Food Control. 98:253–261. doi: 10.1016/j.foodcont.2018.11.037.
  • D'Amore T, Di Taranto A, Berardi G, Vita V, Marchesani G, Chiaravalle AE, Iammarino M. 2020. Sulfites in meat: occurrence, activity, toxicity, regulation, and detection. A comprehensive review. Compr Rev Food Sci Food Saf. 19(5):2701–2720. doi: 10.1111/1541-4337.12607.
  • Du QW, Zhu MT, Shi T, Luo X, Gan B, Tang LJ, Chen Y. 2021. Adulteration detection of corn oil, rapeseed oil and sunflower oil in camellia oil by in situ diffuse reflectance near-infrared spectroscopy and chemometrics. Food Control. 121:107577. doi: 10.1016/j.foodcont.2020.107577.
  • Elfiky AM, Shawky E, Khattab AR, Ibrahim RS. 2022. Integration of NIR spectroscopy and chemometrics for authentication and quantitation of adulteration in sweet marjoram (Origanum majorana L.). Microchem J. 183:108125. doi: 10.1016/j.microc.2022.108125.
  • Gan RY, Wang MF, Lui WY, Wu K, Corke H. 2016. Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts. Int J Food Sci Technol. 51(9):2090–2098. doi: 10.1111/ijfs.13185.
  • Guajardo-Flores D, García-Patiño M, Serna-Guerrero D, Gutiérrez-Uribe JA, Serna-Saldívar SO. 2012. Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans. Food Chem. 134(3):1312–1319. doi: 10.1016/j.foodchem.2012.03.020.
  • Guo Z, Zhang J, Sun JS, Dong HW, Huang JC, Geng LJ, Li SL, Jin XZ, Guo YM, Sun X. 2024. A multivariate algorithm for identifying contaminated peanut using visible and near-infrared hyperspectral imaging. Talanta. 267:125187. doi: 10.1016/j.talanta.2023.125187.
  • Huang FP, Peng YM, Li LH, Ye ST, Hong SY. 2023. Near-Infrared spectroscopy combined with machine learning methods for distinguishment of the storage years of rice. Infrared Phys Technol. 133:104835. doi: 10.1016/j.infrared.2023.104835.
  • Huang YC, Chapman J, Deng YF, Cozzolino D. 2020. Rapid measurement of microplastic contamination in chicken meat by mid infrared spectroscopy and chemometrics: a feasibility study. Food Control. 113:107187. doi: 10.1016/j.foodcont.2020.107187.
  • Jia XZ, Liang YY, Chen F, Liu XX, Wei CJ, Ding Q, Chen XD, Sun DM, Wei M. 2021. HPLC-PDA combined with chemometrics for chemical markers of Paeoniae Radix Alba before and after sulfur-fumigated. Results Chem. 3:100155. doi: 10.1016/j.rechem.2021.100155.
  • Jiang J, Xiao SC, Yan S, Zhang JX, Xu XM. 2020. The effects of sulfur fumigation processing on Panacis Quinquefolii Radix in chemical profile, immunoregulation and liver and kidney injury. J Ethnopharmacol. 249:112377. doi: 10.1016/j.jep.2019.112377.
  • Li P, Zhang YN, Ding Y, Wu Q, Liu ZF, Zhao PH, Zhao GJ, Ye SH. 2022. Discrimination of raw and sulfur-fumigated ginseng based on Fourier transform infrared spectroscopy coupled with chemometrics. Microchem J. 181:107767. doi: 10.1016/j.microc.2022.107767.
  • Li SL, Xing BC, Lin D, Yi HJ, Shao QS. 2020. Rapid detection of saffron (Crocus sativus L.) adulterated with lotus stamens and corn stigmas by near-infrared spectroscopy and chemometrics. Ind Crops Prod. 152:112539. doi: 10.1016/j.indcrop.2020.112539.
  • Lin JL, Zhu YJ, Cheng WH, Wang JX, Wu B, Wang JD. 2014. Determination of free and total sulfite in red globe grape by ion chromatography. Food Sci Technol Res. 20(5):1079–1085. doi: 10.3136/fstr.20.1079.
  • Liu H, Liu HG, Li JQ, Wang YZ. 2023. Rapid and accurate authentication of Porcini mushroom species using Fourier transform near-infrared spectra combined with machine learning and chemometrics. ACS Omega. 8(22):19663–19673. doi: 10.1021/acsomega.3c01229.
  • Lohumi S, Lee S, Lee H, Cho BK. 2015. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci Technol. 46(1):85–98. doi: 10.1016/j.tifs.2015.08.003.
  • Lyu CY, Zhang XY, Huang L, Yuan XX, Xue CC, Chen X. 2022. Widely targeted metabolomics analysis characterizes the phenolic compounds profiles in mung bean sprouts under sucrose treatment. Food Chem. 395:133601. doi: 10.1016/j.foodchem.2022.1336.
  • Pandiselvam R, Mahanti NK, Manikantan MR, Kothakota A, Chakraborty SK, Ramesh SV, Beegum PS. 2022. Rapid detection of adulteration in desiccated coconut powder: vis-NIR spectroscopy and chemometric approach. Food Control. 133:108588. doi: 10.1016/j.foodcont.2021.108588.
  • Rodríguez SD, Rolandelli G, Buera MP. 2019. Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chem. 274:392–401. doi: 10.1016/j.foodchem.2018.08.140.
  • Schulz H, Baranska M. 2007. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc. 43(1):13–25. doi: 10.1007/s12161-021-02065-6.
  • Shi XY, Gan XQ, Wang XB, Peng JL, Li ZH, Wu XQ, Shao QS, Zhang A. 2022. Rapid detection of Ganoderma lucidum spore powder adulterated with dyed starch by NIR spectroscopy and chemometrics. LWT. 167:113829. doi: 10.1016/j.lwt.2022.113829.
  • Sohn SI, Pandian S, Oh YJ, Zinia Zaukuu JL, Lee YH, Shin EK. 2022. Discrimination of Brassica juncea varieties using visible near-infrared (vis-NIR) spectroscopy and chemometrics methods. Int J Mol Sci. 23(21):12809. doi: 10.3390/ijms232112809.
  • Sun WX, Zhang RJ, Fan J, He Y, Mao XH. 2018. Comprehensive transformative profiling of nutritional and functional constituents during germination of soybean sprouts. Food Measure. 12(2):1295–1302. doi: 10.1007/s11694-018-9743-2.
  • Tang DY, Dong YM, Guo N, Li LL, Ren HK. 2014. Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts. J Sci Food Agric. 94(8):1639–1647. doi: 10.1002/jsfa.6471.
  • Tang DY, Dong YM, Ren HK, Li LL, He CF. 2014. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J. 8(1):4. doi: 10.1186/1752-153x-8-4.
  • Yu DX, Guo S, Zhang X, Yan H, Zhang ZY, Chen X, Chen JY, Jin SJ, Yang J, Duan JA. 2022. Rapid detection of adulteration in powder of ginger (Zingiber officinale Roscoe) by FT-NIR spectroscopy combined with chemometrics. Food Chem X. 15:100450. doi: 10.1016/j.fochx.2022.100450.
  • Zang JN, Qing MM, Chi YJ, Chi Y. 2023. Predicting quality of the whole egg powder during storage: based on Arrhenius and radial basis function model. J Food Compos Anal. 124:105666. doi: 10.1016/j.jfca.2023.105666.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.