57
Views
0
CrossRef citations to date
0
Altmetric
Articles

Acid-based deep eutectic solvents followed by GFAAS for the speciation of As(III), As(V), total inorganic arsenic and total arsenic in rice samples

ORCID Icon, , , , , & show all
Pages 617-628 | Received 28 Jan 2024, Accepted 11 Apr 2024, Published online: 26 Apr 2024

References

  • Ahmad SA, Khan MH, Haque M. 2018. Arsenic contamination in groundwater in Bangladesh: implications and challenges for healthcare policy. Risk Manag Healthc Policy. 11:251–261. doi: 10.2147/RMHP.S153188.
  • Ahmadi-Jouibari T, Fattahi N. 2015. Speciation of inorganic arsenic species and total inorganic arsenic in rice using microwave-assisted dispersive liquid–liquid micro-extraction and electrothermal atomic absorption spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32(7):1140–1147. doi: 10.1080/19440049.2015.1049565.
  • Ahmadi-Jouibari T, Shaahmadi Z, Moradi M, Fattahi N. 2022. Extraction and determination of strobilurin fungicides residues in apple samples using ultrasound-assisted dispersive liquid-liquid microextraction based on a novel hydrophobic deep eutectic solvent followed by H.P.L.C-U.V. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 39(1):105–115. doi: 10.1080/19440049.2021.1978559.
  • Akramipour R, Golpayegani MR, Gheini S, Fattahi N. 2018. Speciation of organic/inorganic mercury and total mercury in blood samples using vortex assisted dispersive liquid-liquid microextraction based on the freezing of deep eutectic solvent followed by GFAAS. Talanta. 186:17–23. doi: 10.1016/j.talanta.2018.04.042.
  • Altunay A, Elik A, Gürkan R. 2019. Innovative and practical deep eutectic solvent based vortex assisted microextraction procedure for separation and preconcentration of low levels of arsenic and antimony from sample matrix prior to analysis by hydride generation-atomic absorption spectrometry. Food Chem. 293:378–386. doi: 10.1016/j.foodchem.2019.05.019.
  • Altunay N, Elik A, Lanjwani MF, Tuzen M. 2022. Assessment of arsenic in water, rice and honey samples using new and green vortex-assisted liquid phase microextraction procedure based on deep eutectic solvent: multivariate study. Microchem J. 179:107541. doi: 10.1016/j.microc.2022.107541.
  • Altunay N, Gürkan R. 2017. Determination of sub-ng g–1 levels of total inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry after pre-concentration. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 34(3):390–403. doi: 10.1080/19440049.2016.1264010.
  • Ashouri V, Adib K, Fariman GA, Ganjali MR, Rahimi-Nasrabadi M. 2021. Determination of arsenic species using functionalized ionic liquid by in situ dispersive liquid-liquid microextraction followed by atomic absorption spectrometry. Food Chem. 349:129115. doi: 10.1016/j.foodchem.2021.129115.
  • Assis RC, de Araújo Faria BA, Caldeira CL, Mageste AB, de Lemos LR, Rodrigues GD. 2019. Extraction of arsenic(III) in aqueous two-phase systems: a new methodology for determination and speciation analysis of inorganic arsenic. Microchem J. 147:429–436. doi: 10.1016/j.microc.2019.03.058.
  • Ataee M, Ahmadi-Jouibari T, Noori N, Fattahi N. 2020. The speciation of inorganic arsenic in soil and vegetables irrigated with treated municipal wastewater. RSC Adv. 10(3):1514–1521. doi: 10.1039/c9ra08031g.
  • Aydin F, Yilmaz E, Soylak M. 2018. Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples. Food Chem. 243:442–447. doi: 10.1016/j.foodchem.2017.09.154.
  • Carasek E, Bernardi G, Morelli D, Merib J. 2021. Sustainable green solvents for microextraction techniques: recent developments and applications. J Chromatogr A. 1640:461944. doi: 10.1016/j.chroma.2021.461944.
  • Chen S, Li J, Lu D, Zhang Y. 2016. Dual extraction based on solid phase extraction and solidified floating organic drop microextraction for speciation of arsenic and its distribution in tea leaves and tea infusion by electrothermal vaporization ICP-MS. Food Chem. 211:741–747. doi: 10.1016/j.foodchem.2016.05.101.
  • da Silva FLF, Lima FEH, Andrade Neto DM, de Menezes FL, Fechine LMUD, Akhdhar A, Ribeiro LPD, Nogueira ARA, Fechine PBA, Lopes GS, et al. 2023. Magnetic solid phase extraction as a nonchromatographic method for the quantification of ultratrace inorganic arsenic in rice by inductively coupled plasma-optical emission spectrometry (ICP OES). Food Chem. 412:135461. doi: 10.1016/j.foodchem.2023.135461.
  • dos Santos GM, Pozebon D, Cerveira C, de Moraes DP. 2017. Inorganic arsenic speciation in rice products using selective hydride generation and atomic absorption spectrometry (AAS). Microchem J. 133:265–271. doi: 10.1016/j.microc.2017.03.025.
  • Ghani M, Jafari Z, Maleki B, Chamani M. 2023. Magnetic solid-phase extraction of warfarin and gemfibrozil in biological samples using polydopamine-coated magnetic nanoparticles via core-shell nanostructure. J Sep Sci. 46:2200745.
  • Ghani M, Jafari Z, Raoof JB. 2023. Porous agarose/chitosan/graphene oxide composite coupled with deep eutectic solvent for thin film microextraction of chlorophenols. J Chromatogr A. 1694:463899. doi: 10.1016/j.chroma.2023.463899.
  • Golpayegani MR, Akramipour R, Gheini S, Amini MV, Fattahi F, Mohebbi A, Fattahi N. 2022. Sensitive determination of vincristine in plasma of children with leukaemia using vortex-assisted dispersive liquid–liquid microextraction based on hydrophobic deep eutectic solvent. RSC Adv. 12(6):3611–3617. doi: 10.1039/d1ra07981f.
  • Ji Y, Zhao M, Li A, Zhao L. 2021. Hydrophobic deep eutectic solvent-based ultrasonic-assisted dispersive liquid-liquid microextraction for preconcentration and determination of trace cadmium and arsenic in wine samples. Microchem J. 164:105974. doi: 10.1016/j.microc.2021.105974.
  • Jinadasa KK, Peña-Vázquez E, Bermejo-Barrera P, Moreda-Piñeiro A. 2020. Ionic imprinted polymer–vortex-assisted dispersive micro-solid phase extraction for inorganic arsenic speciation in rice by HPLC-ICP-MS. Talanta. 220:121418. doi: 10.1016/j.talanta.2020.121418.
  • Krishna Mullapudi VB. 2024. A simple and rapid copper-assisted microprecipitation method for the on-site separation of inorganic arsenic species in water samples followed by hydride generation atomic fluorescence spectrometry determination. Spectrochim Acta Part B. 211:106833. doi: 10.1016/j.sab.2023.106833.
  • Li F, Wang X, Wang F, Wen D, Wu Z, Du Y, Du R, Robinson BH, Zhao P. 2021. A risk-based approach for the safety analysis of eight trace elements in Chinese flowering cabbage (Brassica parachinensis L.) in China. J Sci Food Agric. 101(13):5583–5590. doi: 10.1002/jsfa.11209.
  • Ma W, Row KH. 2021. pH-induced deep eutectic solvents based homogeneous liquid-liquid microextraction for the extraction of two antibiotics from environmental water. Microchem J. 160:105642. doi: 10.1016/j.microc.2020.105642.
  • Montoro-Leal P, García-Mesa JC, Morales-Benítez I, García de Torres A, Vereda Alonso E. 2021. Semiautomatic method for the ultra-trace arsenic speciation in environmental and biological samples via magnetic solid phase extraction prior to HPLC-ICP-MS determination. Talanta. 235:122769. doi: 10.1016/j.talanta.2021.122769.
  • Moreira Freire B, Pollo Paniz F, Neves Lange C, Pedron T, da Silva JT, Sanchez FS, Barbat Parfitt JM, Batista BL. 2023. Effect of water management on human exposure to inorganic arsenic and other trace elements through rice consumption. J Food Compos Anal. 122:105462. doi: 10.1016/j.jfca.2023.105462.
  • Munera-Picazo S, Burló F, Carbonell-Barrachina ÁA. 2014. Arsenic speciation in rice-based food for adults with celiac disease. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 31(8):1358–1366. doi: 10.1080/19440049.2014.933491.
  • Nemati M, Farajzadeh MA, Afshar Mogaddam MR, Mohebbi A, Azimi AR, Fattahi N, Tuzen M. 2022. Development of a gas–controlled deep eutectic solvent–based evaporation–assisted dispersive liquid–liquid microextraction approach for the extraction of pyrethroid pesticides from fruit juices. Microchem J. 175:107196. doi: 10.1016/j.microc.2022.107196.
  • Nur T, Loganathan P, Ahmed MB, Johir MAH, Nguyen TV, Vigneswaran S. 2019. Removing arsenic from water by coprecipitation with iron: effect of arsenic and iron concentrations and adsorbent incorporation. Chemosphere. 226:431–438. doi: 10.1016/j.chemosphere.2019.03.142.
  • Purktimatanont K, Mohdee V, Pancharoen U, Maneeintr K, Punyain W, Lothongkum AW. 2023. Synergistic effect of arsenic removal from petroleum condensate via liquid-liquid extraction: thermodynamics, kinetics, DFT and McCabe-Thiele method. Heliyon. 9(12):e23143. doi: 10.1016/j.heliyon.2023.e23143.
  • Shakirova F, Shishov A, Bulatov A. 2022. Hydrolysis of triglycerides in milk to provide fatty acids as precursors in the formation of deep eutectic solvent for extraction of polycyclic aromatic hydrocarbons. Talanta. 237:122968. doi: 10.1016/j.talanta.2021.122968.
  • Shamsipur M, Fattahi N, Assadi Y, Sadeghi M, Sharafi K. 2014. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid–liquid microextraction based on the solidification of floating organic drop. Talanta. 130:26–32. doi: 10.1016/j.talanta.2014.06.049.
  • Shirani M, Habibollahi S, Akbari A. 2019. Centrifuge-less deep eutectic solvent based magnetic nanofluid-linked air-agitated liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium, lead, copper, and arsenic in food samples and non-alcoholic beverages. Food Chem. 281:304–311. doi: 10.1016/j.foodchem.2018.12.110.
  • Shishov A, Terno P, Moskvin L, Bulatov A. 2020. In-syringe dispersive liquid-liquid microextraction using deep eutectic solvent as disperser: determination of chromium (VI) in beverages. Talanta. 206:120209. doi: 10.1016/j.talanta.2019.120209.
  • Shishov A, Timofeeva I, Gerasimov A, Israelyan D, Bulatov A. 2024. A hydrophobic deep eutectic solvent-based microextraction for the determination of ultra-trace arsenic in foods by an electrothermal atomization atomic absorption spectrometry. Talanta. 266(Pt 2):125078. doi: 10.1016/j.talanta.2023.125078.
  • van Osch DJ, Zubeir LF, van den Bruinhorst A, Rocha MA, Kroon MC. 2015. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 17(9):4518–4521. doi: 10.1039/C5GC01451D.
  • Wang X, Xu G, Chen P, Sun Y, Yao X, Lv Y, Guo W, Wang G. 2018. Fully-automated magnetic stirring-assisted lab-in-syringe dispersive liquid–liquid microextraction for the determination of arsenic species in rice samples. RSC Adv. 8(30):16858–16865. doi: 10.1039/c8ra00875b.
  • Wen S, Zhu X. 2018. Speciation of inorganic arsenic(III) and arsenic(V) by a facile dual-cloud point extraction coupled with inductively plasma-optical emission spectrometry. Talanta. 181:265–270. doi: 10.1016/j.talanta.2017.12.083.
  • Xiong D, Zhang Q, Ma W, Wang Y, Wan W, Shi Y, Wang J. 2021. Temperature-switchable deep eutectic solvents for selective separation of aromatic amino acids in water. Sep Purif Technol. 265:118479. doi: 10.1016/j.seppur.2021.118479.
  • Zounr RA, Tuzen M, Khuhawar MY. 2017. Ultrasound assisted deep eutectic solvent based on dispersive liquid liquid microextraction of arsenic speciation in water and environmental samples by electrothermal atomic absorption spectrometry. J Mol Liq. 242:441–446. doi: 10.1016/j.molliq.2017.07.053.
  • Zounr RA, Tuzen M, Khuhawar MY. 2018. Determination of selenium and arsenic ions in edible mushroom samples by novel chloride–oxalic acid deep eutectic solvent extraction using graphite furnace-atomic absorption spectrometry. J AOAC Int. 101(2):593–600. doi: 10.5740/jaoacint.17-0238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.