Publication Cover
Mycology
An International Journal on Fungal Biology
Latest Articles
1,341
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in the production of fungi-derived lignocellulolytic enzymes using agricultural wastes

, &
Received 03 Aug 2023, Accepted 28 Aug 2023, Published online: 13 Sep 2023

References

  • Agnihotri S, Dutt D, Tyagi CH, Kumar A, Upadhyaya JS. 2010. Production and biochemical characterization of a novel cellulase-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC 1165. World J Microbiol Biotechnol. 26(8):1349–1359. doi: 10.1007/s11274-010-0307-9.
  • Ahmadi Khozani M, Emtiazi G, Aghaei SS, Ghasemi SM, Zolfaghari MR. 2021. Application of fungal laccase for heavy metals precipitation using tannin as a natural mediator. Int J Environ Sci Te. 18(8):2335–2344. doi: 10.1007/s13762-020-02992-7.
  • Akpinar M, Ozturk Urek R. 2020. Decolorization and degradation potential of enhanced lignocellulolytic enzymes production by Pleurotus eryngii using cherry waste from industry. Biotechnol Appl Biochem. 67(5):760–773. doi: 10.1002/bab.1846.
  • Akpinar M, Ozturk Urek R. 2022. Direct utilization of peach wastes for enhancements of lignocellulolytic enzymes productions by Pleurotus eryngii under solid-state fermentation conditions. Chem Pap. 76(11):6699–6712. doi: 10.1007/s11696-022-02356-0.
  • An J, Xu W, Meng X, Chen G, Zhang W, Liu W. 2022. Biochemical characterization of a thermophilic exo-arabinanase from the filamentous fungus Rasamsonia emersonii. J Biosci Bioeng. 133(4):316–322. doi: 10.1016/j.jbiosc.2021.12.010.
  • An Q, Liu ZY, Wang CR, Yang J, Chen SY, Chen X, YJ Z, Sen BL, Han ML. 2021. Laccase activity from Pleurotus ostreatus and Flammulina velutipes strains grown on agro-and forestry residues by solid-state fermentation. Bioresources. 16(4):7337–7354. doi: 10.15376/biores.16.4.7337-7354.
  • Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B. 2018. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci. 18(11):768–778. doi: 10.1002/elsc.201800039.
  • Astolfi V, Astolfi AL, Mazutti MA, Rigo E, Di Luccio M, Camargo AF, Dalastra C, Kubeneck S, Fongaro G, Treichel H. 2019. Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach. Bioprocess Biosyst Eng. 42(5):677–685. doi: 10.1007/s00449-019-02072-2.
  • Awogbemi O, Von KD. 2022. Pretreatment techniques for agricultural waste. Case Studies Chem Environl Eng. 6:100229. doi:10.1016/j.cscee.2022.100229.
  • Backes E, Kato CG, da Silva TBV, Uber TM, Pasquarelli DL, Bracht A, Peralta RM. 2022. Production of fungal laccase on pineapple waste and application in detoxification of malachite green. J Environ Sci Health B. 57(2):90–101. doi: 10.1080/03601234.2022.2025739.
  • Barbosa FC, Silvello MA, Goldbeck R. 2020. Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol Lett. 42(6):875–884. doi: 10.1007/s10529-020-02875-4.
  • Ben Hmad I, Boudabbous M, Belghith H, Gargouri A. 2017. A novel ionic liquid-stable halophilic endoglucanase from Stachybotrys microspora. Process Biochem. 54:59–66. doi: 10.1016/j.procbio.2017.01.007.
  • Benassi VM, de Lucas RC, Jorge JA, de LT de M PM. 2014. Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production. Braz J Microbiol. 45(4):1459–1467. doi: 10.1590/S1517-83822014000400042.
  • Chablé-Villacis R, Olguin-Maciel E, Toledano-Thompson T, Alzate-Gaviria L, Ruiz HA, Tapia-Tussell R. 2021. Enzymatic hydrolysis assisted with ligninocellulolytic enzymes from Trametes hirsuta produced by pineapple leaf waste bioconversion in solid-state fermentation. Biomass Conv Bioref. 13(10):9095–9106. doi: 10.1007/s13399-021-01851-w.
  • Chapla D, Dholakiya S, Madamwar D, Shah A. 2013. Characterization of purified fungal endoxylanase and its application for production of value added food ingredient from agroresidues. Food Bioprod Process. 91(4):682–692. doi: 10.1016/j.fbp.2013.08.005.
  • Chenthamarakshan A, Parambayil N, Miziriya N, Soumya PS, Lakshmi MSK, Ramgopal A, Dileep A, Nambisan P. 2017. Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of design of experiments. BMC Biotechnol. 17(1):12. doi: 10.1186/s12896-017-0333-x.
  • Chio C, Sain M, Qin W. 2019. Lignin utilization: A review of lignin depolymerization from various aspects. Renew Sust Energ Rev. 107:232–249. doi: 10.1016/j.rser.2019.03.008.
  • Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. 2020. Lignocellulolytic enzymes in biotechnological and industrial processes: A review. Sustainability (Switzerland). 12(18):7282. doi: 10.3390/su12187282.
  • Claes A, Deparis Q, Foulquié-Moreno MR, Thevelein JM. 2020. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. Metab Eng. 59:131–141. doi: 10.1016/j.ymben.2020.02.004.
  • da Rosa-Garzon NG, Laure HJ, Rosa JC, Cabral H. 2022. Valorization of agricultural residues using Myceliophthora thermophila as a platform for production of lignocellulolytic enzymes for cellulose saccharification. Biomass Bioenergy. 161:106452. doi: 10.1016/j.biombioe.2022.106452.
  • Dave BR, Sudhir AP, Subramanian RB. 2015. Purification and properties of an endoglucanase from Thermoascus aurantiacus. Biotechnol Reports. 6:85–90. doi: 10.1016/j.btre.2014.11.004.
  • de Almeida Antunes Ferraz JL, Souza LO, Soares GA, Coutinho JP, de Oliveira JR, Aguiar-Oliveira E, Franco M. 2018. Enzymatic saccharification of lignocellulosic residues using cellulolytic enzyme extract produced by Penicillium roqueforti ATCC 10110 cultivated on residue of yellow mombin fruit. Bioresour Technol. 248(PA):214–220. doi: 10.1016/j.biortech.2017.06.048.
  • de Oliveira Júnior SD, dos Santos Gouvêa PR, de Aguiar LVB, Pessoa VA, dos Santos Cruz Costa CL, Chevreuil LR, Dedo BritoNascimento LB, dos Santos ES, Sales-Campos C. 2022. Production of lignocellulolytic enzymes and phenolic compounds by Lentinus strigosus from the amazon using solid-state fermentation (ssf) of guarana (Paullinia cupana) residue. Appl Biochem Biotechnol. 194(7):2882–2900. doi: 10.1007/s12010-022-03851-6.
  • de Oliveira Simões LC, da Silva RR, de Oliveira Nascimento CE, Boscolo M, Gomes E, da Silva R. 2019. Purification and physicochemical characterization of a novel thermostable xylanase secreted by the fungus Myceliophthora heterothallica F.2.1.4. Appl Biochem Biotechnol. 188(4):991–1008. doi: 10.1007/s12010-019-02973-8.
  • Dewan S. 2021. Global markets for enzymes in industrial applications [Internet]. Wellesley, MA; [accessed 2023 Jul 31]. https://www.bccresearch.com/market-research/biotechnology/global-markets-for-enzymes-in-industrial-applications.html
  • Elegbede JA, Lateef A. 2018. Valorization of corn-cob by fungal isolates for production of xylanase in submerged and solid state fermentation media and potential biotechnological applications. Waste Biomass Valorization. 9(8):1273–1287. doi: 10.1007/s12649-017-9932-y.
  • Escuder-Rodríguez JJ, González-Suarez M, deCastro ME, Saavedra-Bouza A, Becerra M, González-Siso MI. 2022. Characterization of a novel thermophilic metagenomic GH5 endoglucanase heterologously expressed in Escherichia coli and Saccharomyces cerevisiae. Biotechnol Biofuels. 15(1):76. doi: 10.1186/s13068-022-02172-4.
  • Ezeilo UR, Wahab RA, Tin LC, Zakaria II, Huyop F, Mahat NA. 2020. Fungal-assisted valorization of raw oil palm leaves for production of cellulase and xylanase in solid state fermentation media. Waste Biomass Valorization. 11(7):3133–3149. doi: 10.1007/s12649-019-00653-6.
  • Fatma S, Saleem A, Tabassum R. 2021. Wheat straw hydrolysis by using co-cultures of Trichoderma reesei and Monascus purpureus toward enhanced biodegradation of the lignocellulosic biomass in bioethanol biorefinery. Biomass Conv Bioref. 11(3):743–754. doi: 10.1007/s13399-020-00652-x.
  • Favaro CP, Baraldi IJ, Casciatori FP, Farinas CS. 2020. β-mannanase production using coffee industry waste for application in soluble coffee processing. Biomolecules. 10(2):227. doi: 10.3390/biom10020227.
  • Filipe D, Fernandes H, Castro C, Peres H, Oliva-Teles A, Belo I, Salgado JM. 2020. Improved lignocellulolytic enzyme production and antioxidant extraction using solid-state fermentation of olive pomace mixed with winery waste. Biofuels Bioprod Bioref. 14(1):78–91. doi: 10.1002/bbb.2073.
  • Gao B, Ma Y, Xiao Y, Wang Y, Pan Y, Zhu D. 2023. Lignocellulolytic enzyme cocktail produced by plant endophytic Chaetomium globosum exhibits a capacity for high-efficient saccharification of raw rice straw. Ind Crops Prod. 196:116508. doi:10.1016/j.indcrop.2023.116508.
  • Gao B, Xiao Y, Zhang Q, Sun J, Zhang Z, Zhu D. 2021. Concurrent production of glycyrrhetic acid 3-O-mono-β-d-glucuronide and lignocellulolytic enzymes by solid-state fermentation of a plant endophytic Chaetomium globosum. Bioresour Bioprocess. 8(1):88. doi: 10.1186/s40643-021-00441-y.
  • Gao L, Gao F, Jiang X, Zhang C, Zhang D, Wang L, Wu G, Chen S. 2014. Biochemical characterization of a new β-glucosidase (Cel3E) from Penicillium piceum and its application in boosting lignocelluloses bioconversion and forming disaccharide inducers: New insights into the role of β-glucosidase. Process Biochem. 49(5):768–774. doi: 10.1016/j.procbio.2014.02.012.
  • Gao L, He X, Guo Y, Wu Z, Zhao J, Liu G, Qu Y. 2021. Combinatorial engineering of transcriptional activators in Penicillium oxalicum for improved production of corn-fiber-degrading enzymes. J Agric Food Chem. 69(8):2539–2548. doi: 10.1021/acs.jafc.0c07659.
  • Gao L, Li Z, Xia C, Qu Y, Liu M, Yang P, Yu L, Song X. 2017. Combining manipulation of transcription factors and overexpression of the target genes to enhance lignocellulolytic enzyme production in Penicillium oxalicum. Biotechnol Biofuels. 10(1):100. doi: 10.1186/s13068-017-0783-3.
  • Garcia NFL, da Silva Santos FR, Gonçalves FA, da Paz MF, Fonseca GG, Leite RSR. 2015. Production of β-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: Characterization and catalytic properties of the enzymatic extract. Electron J Biotechn. 18(4):314–319. doi: 10.1016/j.ejbt.2015.05.007.
  • Ge S, Chen X, Li D, Liu Z, Ouyang H, Peng W, Zhang Z. 2018. Hemicellulose structural changes during steam pretreatment and biogradation of Lentinus edodes. Arab J Chem. 11(6):771–781. doi: 10.1016/j.arabjc.2017.12.022.
  • Gooruee R, Hojjati M, Behbahani BA, Shahbazi S, Askari H. 2022. Extracellular enzyme production by different species of Trichoderma fungus for lemon peel waste bioconversion. Biomass Conv Bioref. 11(1):162. doi: 10.1007/s13399-022-02626-7.
  • Hosseini Koupaie E, Dahadha S, Bazyar Lakeh AA, Azizi A, Elbeshbishy E. 2019. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. J Environ Manage. 233:774–784. doi:10.1016/j.jenvman.2018.09.106.
  • Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S. 2020. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review. Biomass Bioenergy. 134:105481. doi:10.1016/j.biombioe.2020.105481.
  • Intasit R, Cheirsilp B, Louhasakul Y, Thongchul N. 2023. Enhanced biovalorization of palm biomass wastes as biodiesel feedstocks through integrated solid-state and submerged fermentations by fungal co-cultures. Bioresour Technol. 380:129105. doi:10.1016/J.BIORTECH.2023.129105.
  • Intasit R, Cheirsilp B, Suyotha W, Boonsawang P. 2021. Synergistic production of highly active enzymatic cocktails from lignocellulosic palm wastes by sequential solid state-submerged fermentation and co-cultivation of different filamentous fungi. Biochem Eng J. 173:108086. doi:10.1016/j.bej.2021.108086.
  • Jana UK, Suryawanshi RK, Prajapati BP, Soni H, Kango N. 2018. Production optimization and characterization of mannooligosaccharide generating Β-mannanase from Aspergillus oryzae. Bioresour Technol. 268:308–314. doi:10.1016/j.biortech.2018.07.143.
  • Katsimpouras C, Dedes G, Thomaidis NS, Topakas E. 2019. A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity. Biotechnol Biofuels. 12(1):3619–3658. doi: 10.1186/s13068-019-1455-2.
  • Khatoon N, Jamal A, Ali MI. 2019. Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste. Environ Tech. 40(11):1366–1375. doi: 10.1080/09593330.2017.1422550.
  • Kuo HW, Zeng JK, Wang PH, Chen WC. 2015. A novel exo-glucanase explored from a Meyerozyma sp. fungal strain. Adv Enzyme Res. 3(03):53–65. doi: 10.4236/aer.2015.33006.
  • Leite P, Sousa D, Fernandes H, Ferreira M, Costa AR, Filipe D, Gonçalves M, Peres H, Belo I, Salgado JM. 2021. Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Curr Opin Green Sustain Chem. 27:100407. doi:10.1016/j.cogsc.2020.100407.
  • Li W, Yu J, Li Z, Yin WB. 2019. Rational design for fungal laccase production in the model host Aspergillus nidulans. Sci China Life Sci. 62(1):84–94. doi: 10.1007/s11427-017-9304-8.
  • Liu E, Segato F, Wilkins MR. 2021. Fed-batch production of Thermothelomyces thermophilus lignin peroxidase using a recombinant Aspergillus nidulans strain in stirred-tank bioreactor. Bioresour Technol. 325:124700. doi:10.1016/j.biortech.2021.124700.
  • Liu J, Yang J, Wang R, Liu L, Zhang Y, Bao H, Jang JM, Wang E, Yuan H. 2020. Comparative characterization of extracellular enzymes secreted by Phanerochaete chrysosporium during solid-state and submerged fermentation. Int J Biol Macromol. 152:288–294. doi:10.1016/j.ijbiomac.2020.02.256.
  • Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C. 2017. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels. 10(1):1. doi: 10.1186/s13068-016-0693-9.
  • Lu X, Li F, Zhou X, Hu J, Liu P. 2022. Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments. Food Chem. 384:132622. doi:10.1016/j.foodchem.2022.132622.
  • Mahmood RT, Asad MJ, Mehboob N, Mushtaq M, Gulfraz M, Asgher M, Minhas NM, Hadri SH. 2013. Production, purification, and characterization of exoglucanase by Aspergillus fumigatus. Appl Biochem Biotechnol. 170(4):895–908. doi: 10.1007/s12010-013-0227-x.
  • Majeke BM, García-Aparicio M, Biko OD, Viljoen-Bloom M, van Zyl WH, Görgens JF. 2020. Synergistic codon optimization and bioreactor cultivation toward enhanced secretion of fungal lignin peroxidase in Pichia pastoris: Enzymatic valorization of technical (industrial) lignins. Enzyme Microb Technol. 139:109593. doi: 10.1016/j.enzmictec.2020.109593.
  • Malik K, Sharma P, Yang Y, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, et al. 2022. Lignocellulosic biomass for bioethanol: Insight into the advanced pretreatment and fermentation approaches. Ind Crops Prod. 188:115569. doi: 10.1016/j.indcrop.2022.115569.
  • Martarello RD, Cunha L, Cardoso SL, de Freitas MM, Silveira D, Fonseca-Bazzo YM, Homem-de-Mello M, Filho EXF, Magalhães PO. 2019. Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue. AMB Express. 9(1):81. doi: 10.1186/s13568-019-0805-6.
  • McNamara JT, Morgan JLW, Zimmer J. 2015. A molecular description of cellulose biosynthesis. Annu Rev Biochem. 84(1):895–921. doi: 10.1146/annurev-biochem-060614-033930.
  • Méndez-Líter JA, Nieto-Domínguez M, Fernández De Toro B, González Santana A, Prieto A, Asensio JL, Cañada FJ, De Eugenio LI, Martínez MJ. 2020. A glucotolerant β-glucosidase from the fungus Talaromyces amestolkiae and its conversion into a glycosynthase for glycosylation of phenolic compounds. Microb Cell Fact. 19(1):127. doi: 10.1186/s12934-020-01386-1.
  • Ming C, Dilokpimol A, Zou C, Liao W, Zhao L, Wang M, de Vries RP, Kang Y. 2019. The quest for fungal strains and their co-culture potential to improve enzymatic degradation of Chinese distillers’ grain and other agricultural wastes. Int Biodeterior Biodegradation. 144:104765. doi: 10.1016/j.ibiod.2019.104765.
  • Moran-Aguilar MG, Costa-Trigo I, Calderón-Santoyo M, Domínguez JM, Aguilar-Uscanga MG. 2021. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem Eng J. 172:108060. doi:10.1016/j.bej.2021.108060.
  • Mtibaà R, Barriuso J, de Eugenio L, Aranda E, Belbahri L, Nasri M, Martínez MJ, Mechichi T. 2018. Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. Int J Biol Macromol. 120(PB):1744–1751. doi: 10.1016/j.ijbiomac.2018.09.175.
  • Namnuch N, Thammasittirong A, Thammasittirong SNR. 2021. Lignocellulose hydrolytic enzymes production by Aspergillus flavus KUB2 using submerged fermentation of sugarcane bagasse waste. Mycology. 12(2):119–127. doi: 10.1080/21501203.2020.1806938.
  • Okado N, Sugi M, Kasamoto S, Mizuhashi F, Roberts A, Danielewska-Nikiel B, Sulaiman C, Pham S. 2020. Safety evaluation of arabinase (arabinan endo-1,5-α-L-arabinanase) from Aspergillus tubingensis. Food Sci Nutr. 8(1):456–478. doi: 10.1002/fsn3.1329.
  • Orozco Colonia BS, Lorenci Woiciechowski A, Malanski R, Junior Letti LA, Soccol CR. 2019. Pulp improvement of oil palm empty fruit bunches associated to solid-state biopulping and biobleaching with xylanase and lignin peroxidase cocktail produced by Aspergillus sp. LPB-5. Bioresour Technol. 285:121361. doi:10.1016/j.biortech.2019.121361.
  • Ozcirak Ergun S, Ozturk Urek R. 2017. Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrar Sci. 15(2):273–277. doi: 10.1016/j.aasci.2017.04.003.
  • Papadaki A, Kachrimanidou V, Papanikolaou S, Philippoussis A, Diamantopoulou P. 2019. Upgrading grape pomace through Pleurotus spp. Cultivation for the production of enzymes and fruiting bodies. Microorganisms. 7(7):207. doi: 10.3390/microorganisms7070207.
  • Patel A, Divecha J, Shah A. 2021. Fomitopsis meliae CFA 2, a novel brown rot for endoglucanase: emphasis towards enhanced endoglucanase production by statistical approach. Mycology. 12(4):325–340. doi: 10.1080/21501203.2021.1918277.
  • Perdani MS, Margaretha G, Sahlan M, Hermansyah H. 2020. Solid state fermentation method for production of laccase enzyme with bagasse, cornstalk and rice husk as substrates for adrenaline biosensor. Ener Rep. 6(S1):336–340. doi: 10.1016/j.egyr.2019.08.065.
  • Qi J, Jia L, Liang Y, Luo B, Zhao R, Zhang C, Wen J, Zhou Y, Fan M, Xia Y. 2022. Fungi’s selectivity in the biodegradation of Dendrocalamus sinicus decayed by white and brown rot fungi. Ind Crops Prod. 188(PB):115726. doi: 10.1016/j.indcrop.2022.115726.
  • Rajasree KP, Mathew GM, Pandey A, Sukumaran RK. 2013. Highly glucose tolerant β-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. J Ind Microbiol Biotechnol. 40(9):967–975. doi: 10.1007/s10295-013-1291-5.
  • Ralph J, Lapierre C, Boerjan W. 2019. Lignin structure and its engineering. Curr Opin Biotechnol. 56:240–249. doi:10.1016/j.copbio.2019.02.019.
  • Rao J, Lv Z, Chen G, Peng F. 2023. Hemicellulose: Structure, chemical modification, and application. Prog Polym Sci. 140:101675. doi:10.1016/j.progpolymsci.2023.101675.
  • Raud M, Kikas T, Sippula O, Shurpali N. 2019. Potentials and challenges in lignocellulosic biofuel production technology. Renew Sust Energ Rev. 111:44–56. doi: 10.1016/j.rser.2019.05.020.
  • Ravindran R, Williams GA, Jaiswal AK. 2019. Spent coffee waste as a potential media component for xylanase production and potential application in juice enrichment. Foods. 8(11):585. doi: 10.3390/foods8110585.
  • Rekik H, Zaraî Jaouadi N, Bouacem K, Zenati B, Kourdali S, Badis A, Annane R, Bouanane-Darenfed A, Bejar S, Jaouadi B. 2019. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int J Biol Macromol. 125:514–525. doi:10.1016/j.ijbiomac.2018.12.053.
  • Rodríguez-Luna D, Ruiz HA, González-Morales S, Sandoval-Rangel A, Cabrera de la Fuente M, Charles-Rodríguez AV, Robledo-Olivo A. 2022. Recovery of melon residues (Cucumis melo) to produce lignocellulolytic enzymes. Biomass Convers Biorefin. 12(12):5915–5922. doi: 10.1007/s13399-020-01055-8.
  • Rungrattanakasin B, Premjet S, Thanonkeo S, Klanrit P, Thanonkeo P. 2018. Cloning and expression of an endoglucanase gene from the thermotolerant fungus Aspergillus fumigatus DBiNU-1 in Kluyveromyces lactis. Braz J Microbiol. 49(3):647–655. doi: 10.1016/j.bjm.2017.10.001.
  • Saini S, Sharma KK. 2021. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research. Int J Biol Macromol. 193(PB):2304–2319. doi: 10.1016/j.ijbiomac.2021.11.063.
  • Saldarriaga-Hernández S, Velasco-Ayala C, Leal-Isla Flores P, de Jesús Rostro-Alanis M, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. 2020. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol. 161:1099–1116. doi:10.1016/j.ijbiomac.2020.06.047.
  • Saratale GD, Saratale RG, Ghodake GS, Jiang YY, Chang JS, Shin HS, Kumar G. 2017. Solid state fermentative lignocellulolytic enzymes production, characterization and its application in the saccharification of rice waste biomass for ethanol production: An integrated biotechnological approach. J Taiwan Inst Chem Eng. 76:51–58. doi:10.1016/J.JTICE.2017.03.027.
  • Senthivelan T, Kanagaraj J, Panda RC, Narayani T. 2019. Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum: Media optimization by response surface methodology (RSM) and central composite rotatable design (CCRD). Biotechnol Reports. 23:e00344. doi: 10.1016/j.btre.2019.e00344.
  • Shalaby ASG, Esawy MA, Hussein MDM. 2017. Comparative study between free and immobilized Penicillium chrysogenum mannanase: A local fungal isolate. J Appl Pharm Sci. 7(6):97–104. doi: 10.7324/JAPS.2017.70613.
  • Sharma D, Garlapati VK, Goel G. 2016. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered. 7(2):88–97. doi: 10.1080/21655979.2016.1160190.
  • Shi K, Liu Y, Chen P, Li Y. 2021. Contribution of lignin peroxidase, manganese peroxidase, and laccase in lignite degradation by mixed white-rot fungi. Waste Biomass Valorization. 12(7):3753–3763. doi: 10.1007/s12649-020-01275-z.
  • Silva AFV, Santos LA, Valença RB, Porto TS, Da Motta Sobrinho MA, Gomes GJC, Jucá JFT, Santos AFMS. 2019. Cellulase production to obtain biogas from passion fruit (Passiflora edulis) peel waste hydrolysate. J Environ Chem Eng. 7(6):103510. doi: 10.1016/j.jece.2019.103510.
  • Singh P, Jain P, Verma R, Jagadish RS. 2016. Characterization of lignin peroxidase from Paecilomyces species for decolorisation of pulp and paper mill effluent. J Sci Ind Res. 75(8):500–505.
  • Sista Kameshwar AK, Qin W. 2018. Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology. 9(2):93–105. doi: 10.1080/21501203.2017.1419296.
  • Sperandio GB, Filho EXF. 2021. An overview of Trichoderma reesei co-cultures for the production of lignocellulolytic enzymes. Appl Microbiol Biotechnol. 105(8):3019–3025. doi: 10.1007/s00253-021-11261-7.
  • Sugano J, Maina N, Wallenius J, Hildén K. 2021. Enhanced lignocellulolytic enzyme activities on hardwood and softwood during interspecific interactions of white-and brown-rot fungi. J Fungus. 7(4):265. doi: 10.3390/jof7040265.
  • Sunardi TJ, Ishiguri F, Ohshima J, Iizuka K, Yokota S. 2016. Changes in lignocellulolytic enzyme activity during the degradation of Picea jezoensis wood by the white-rot fungus Porodaedalea pini. Int Biodeterior Biodegradation. 110:108–112. doi:10.1016/j.ibiod.2016.02.022.
  • Sung HJ, Khan MF, Kim YH. 2019. Recombinant lignin peroxidase-catalyzed decolorization of melanin using in-situ generated H2O2 for application in whitening cosmetics. Int J Biol Macromol. 136:20–26. doi:10.1016/j.ijbiomac.2019.06.026.
  • Thamvithayakorn P, Phosri C, Pisutpaisal N, Krajangsang S, Whalley AJS, Suwannasai N. 2019. Utilization of oil palm decanter cake for valuable laccase and manganese peroxidase enzyme production from a novel white-rot fungus. Pseudolagarobasidium. 9(11):417. sp. PP17-33. 3 Biotech. doi:10.1007/s13205-019-1945-8.
  • Ul HI, Akram F. 2019. Enhanced production, overexpression and characterization of a hyperthermophilic multimodular GH family 2 β glucuronidase (TpGUS) cloned from Thermotoga petrophila RKU-1T in a mesophilic host. Int J Biol Macromol. 123:1132–1142. doi:10.1016/j.ijbiomac.2018.11.189.
  • Vázquez-Montoya EL, Castro-Ochoa LD, Maldonado-Mendoza IE, Luna-Suárez S, Castro-Martínez C. 2020. Moringa straw as cellulase production inducer and cellulolytic fungi source. Rev Argent Microbiol. 52(1):4–12. doi: 10.1016/J.RAM.2019.02.005.
  • Velasco J, Oliva B, Gonçalves AL, Lima AS, Ferreira G, França BA, Mulinari EJ, Gonçalves TA, Squina FM, Kadowaki MAS, et al. 2020. Functional characterization of a novel thermophilic exo-arabinanase from Thermothielavioides terrestris. Appl Microbiol Biotechnol. 104(19):8309–8326. doi: 10.1007/s00253-020-10806-6.
  • Vidya B, Palaniswamy M, Angayarkanni J, Ayub Nawaz K, Thandeeswaran M, Krishna Chaithanya K, Tekluu B, Muthusamy K, Gopalakrishnan VK. 2020. Purification and characterization of β-galactosidase from newly isolated Aspergillus terreus (KUBCF1306) and evaluating its efficacy on breast cancer cell line (MCF-7). Bioorg Chem. 94:103442. doi:10.1016/j.bioorg.2019.103442.
  • Wang J, Gong Y, Zhao S, Liu G. 2018. A new regulator of cellulase and xylanase in the thermophilic fungus Myceliophthora thermophila strain ATCC 42464. 3 Biotech. 8(3):160. doi: 10.1007/s13205-017-1069-y.
  • Wang J, Huang J, Laffend H, Jiang S, Zhang J, Ning Y, Fang M, Liu S. 2020. Optimization of immobilized Lactobacillus pentosus cell fermentation for lactic acid production. Bioresour Bioprocess. 7(1):15. doi: 10.1186/s40643-020-00305-x.
  • Wang J, Liu S, Huang J, Cui R, Xu Y, Song Z. 2023. Genetic engineering strategies for sustainable polyhydroxyalkanoate (PHA) production from carbon-rich wastes. Environ Technol Inno. 30:103069. doi: 10.1016/j.eti.2023.103069.
  • Wang J, Liu S, Huang J, Qu Z. 2021. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. Bioresource Techno. 342:126008. doi: 10.1016/j.biortech.2021.126008.
  • Xia C, Li Z, Xu Y, Yang P, Gao L, Yan Q, Li S, Wang Y, Qu Y, Song X. 2019. Introduction of heterologous transcription factors and their target genes into Penicillium oxalicum leads to increased lignocellulolytic enzyme production. Appl Microbiol Biotechnol. 103(6):2675–2687. doi: 10.1007/s00253-018-09612-y.
  • Xia Y, Yang L, Xia L. 2018. High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase. Process Biochem. 70:55–60. doi: 10.1016/j.procbio.2018.03.031.
  • Xu G, Wang J, Yin Q, Fang W, Xiao Y, Fang Z. 2019. Expression of a thermo- and alkali-philic fungal laccase in Pichia pastoris and its application. Protein Expr Purif. 154:16–24. doi:10.1016/j.pep.2018.09.015.
  • Zhang H, Zhang J, Zhang X, Geng A. 2018. Purification and characterization of a novel manganese peroxidase from white-rot fungus Cerrena unicolor BBP6 and its application in dye decolorization and denim bleaching. Process Biochem. 66:222–229. doi: 10.1016/j.procbio.2017.12.011.
  • Zhou J, Zhu P, Hu X, Lu H, Yu Y. 2018. Improved secretory expression of lignocellulolytic enzymes in Kluyveromyces marxianus by promoter and signal sequence engineering. Biotechnol Biofuels. 11(1):235. doi: 10.1186/s13068-018-1232-7.
  • Zou S, Liu G, Kaleem I, Li C. 2013. Purification and characterization of a highly selective glycyrrhizin-hydrolyzing β-glucuronidase from Penicillium purpurogenum Li-3. Process Biochem. 48(2):358–363. doi: 10.1016/j.procbio.2012.12.008.