Publication Cover
Mycology
An International Journal on Fungal Biology
Latest Articles
717
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Utilization of Peach-palm waste for cost-effective amylase production by Trichoderma stromaticum: Stability and industrial potential

, , ORCID Icon, , , ORCID Icon & show all
Received 15 Sep 2023, Accepted 21 Oct 2023, Published online: 12 Nov 2023

References

  • Abdel-Aty AM, Bassuiny RI, Barakat AZ, Mohamed SA. 2019. Upgrading the phenolic content, antioxidant and antimicrobial activities of garden cress seeds using solid-state fermentation by Trichoderma reesei. J Appl Microbiol. 127:1454–1467. doi: 10.1111/jam.14394.
  • Aliyah A, Alamsyah G, Ramadhani R, Hermnsyah H. 2017. Production of α-amilase and β-glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse, and corn cob. Enrgy Proced. 136:418–423. doi: 10.1016/j.egypro.2017.10.269.
  • Bezerra CO, Carneiro LL, Carvalho EA, Chagas TP, Carvalho LR, Uetanabaro APT, da Silva GP, da Silva EGP, Costa AM, da Silva GP, et al. 2021. Artificial intelligence as a combinatorial optimization strategy for cellulase production by Trichoderma stromaticum AM7 using peach-palm waste under solid-state fermentation. Bioenerg Res. 14(4):1161–1170. doi: 10.1007/s12155-020-10234-4.
  • Bolanho B, Danesi E, Beléia A. 2013. Peach palm (bactris gasipaes Kunth) characterization and the potential of by-products flour processing. Food Sci Technol Res. 19(6):1061–1069. doi: 10.3136/fstr.19.1061.
  • Carvalho E, Góes L, Uetanabaro APT, Da Silva E, Rodrigues L, Pirovani C, Costa AM. 2017. Thermoresistant xylanases from Trichoderma stromaticum: application in bread making and manufacturing xylo-oligosaccharides. Food Chem. 221:1499–1506. doi: 10.1016/j.foodchem.2016.10.144.
  • Carvalho E, Nunes L, Goes L, Silva E, Franco M, Gross E, Uetanabaro APT, Costa AM. 2018. Peach-palm (bactris gasipaes Kunth.) waste as substrate for xylanase production by Trichoderma stromaticum AM7. Chem Eng Commun. 205(7):975–985. doi: 10.1080/00986445.2018.1425208.
  • Coelho MAZ, Leite SGF, Rosa MF, Furtado AAL. 2001. Aproveitamento de resíduos agroindustriais: Produção de enzimas a partir da casca de coco verde. Boletim CEPPA. 19:33–42. doi: 10.5380/cep.v19i1.1220.
  • Coelho MB, Ribeiro B, Salgado A. 2008. Tecnologia Enzimática. Rio de Janeiro: editora EPUB. p. 288.
  • Costa VC, Silva EGP, Lima DC, Franco M, Jesus RM, Bezerra MA, Amorim FA, Banerjee R. 2018. Use of mixture design with minimal restrictions to optimize an extraction procedure employing diluted acids assisted by ultrasound and Microwave for Nutrient element Determination in vegetal samples. J Braz Chem Soc. 29:1189–1198. doi: 10.21577/0103-5053.20170214.
  • Dey T, Banerjee R. 2015. Purification, biochemical characterization and application of α-amylase produced by Aspergillus oryzae IFO-30103. Biocatal Agric Biotechnol. 4(1):83–90. doi: 10.1016/j.bcab.2014.10.002.
  • Embrapa-Empresa Brasileira de Pesquisa Agropecuária Embrapa Florestas, Colombo PR. 2021. Accessed on 10 August 2021. https://www.embrapa.br/florestas/transferencia-de-tecnologia/pupunha/tema
  • Fonseca M, Sterling R, Lafuente R, Tardioli P. 2021. Optimization of simultaneous saccharification and isomerization of dextrin to high fructose syrup using a mixture of immobilized amyloglucosidase and glucose isomerase. Catal Today. 362:175–183. doi: 10.1016/j.cattod.2020.03.021.
  • Freitas LC, Barbosa JR, Costa ALC DA, Bezerra FWF, Pinto RHH, Carvalho Junior RN. 2021. From waste to sustainable industry: how can agro-industrial wastes help in the development of new products? Resour Conserv Recy. 169:105466. doi: 10.1016/j.resconrec.2021.105466.
  • Grujic´ M, Dojnov B, Potocnik I, Duduk B, Vujcic´ Z. 2015. Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. And Aspergillus niger in solid state fermentation. Int Biodeter Biodegr. 104:290–298. doi: 10.1016/j.ibiod.2015.04.029.
  • Gupta R, Mohapatra H, Goswami VK, Chauhan B. 2003. Microbial α-amylases: Biotechnological Perspective. Process Biochem. 1–18. doi: 10.1016/S0032-9592(03)00053-0.
  • Gusmão RO, Ferraz LM, Rêgo APB, Assis FGV, Leal PL. 2014. Produção de enzimas por Aspergillus spp. Sob fermentação em estado sólido em casca de café. Sci Plena. 10(11):116–202.
  • Hameed U, Price I, Haq I, Ke A, Wilson D, Mirza O. 2017. Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila, reveals high thermostability and an unusual form of dimerization. Biochim Biophys Acta BBA - Proteins Proteom. 1865:1237–1245. doi: 10.1016/j.bbapap.2017.06.015.
  • Hasan M, Marzan L, Hosna A, Hakim A, Azad A. 2017. Optimization of some fermentation conditions for the production of extracellular amylases by using chryseobacterium and Bacillus isolates from organic kitchen wastes. J Genet Eng Biotechnol. 15(1):59–68. doi:10.1016/j.jgeb.2017.02.009.
  • Hernadéz M, Rodríguez M, Guerra N, Rosés R. 2006. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J Food Eng. 73:93–100. doi: 10.1016/j.jfoodeng.2005.01.009.
  • Homaei A, Ghanbarzadeh M, Monsef F. 2015. Biochemical features and kinetic properties of α-amylases from marine organisms. Int J Biol Macromol. 83:306–314. doi: 10.1016/j.ijbiomac.2015.11.080.
  • Kalia S, Bhattacharya A, Prajapati S, Malik A. 2021. Utilization of starch effluent from a textile industry as a fungal growth supplement for enhanced α-amylase production for industrial application. Chemosphere. 279:130554. doi: 10.1016/j.chemosphere.2021.130554.
  • Karan E, Wahab W, Saleh S, Hassan M, Kansoh A, Esawy M. 2017. Production, immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Int J Biol Macromol. 102:694–703. doi: 10.1016/j.ijbiomac.2017.04.033.
  • Miller L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 3(31):426–428. doi: 10.1021/ac60147a030.
  • Nakajima VM, Soares FEF, Queiroz JHQ. 2018. Screening and decolorizing potential of enzymes from spent mushroom composts of six different mushrooms. Biocatal Agric Biotechnol. 13:58–61. doi: 10.1016/j.bcab.2017.11.011.
  • Pacheco CSV, Costa FS, Guedes WN, Jesus MS, Chagas TP, Santos AM, Lima DC, Silva EGP. 2021. Application of mixture design and Kohonen Neural Network for Determination of macro- and microelement in mullet (mugil cephalus) by MIP OES. Food Anal Method. 14:1239–1249. doi: 10.1007/s12161-021-01969-7.
  • Paludo L, Frantz S, Ançay R, Stustz H, Dantas T, Spier M. 2018. Optimization, kinetic and bioprocess parameters of amylases production from Coprinus comatus under submerged culture using starch-based simple medium: Partial enzyme characterization. Biocatal Agric Biotechnol. 16:529–537. doi: 10.1016/j.bcab.2018.09.022.
  • Pandey A, Selvakumar P, Soccol C, Nigam P. 1999. Solid state fermentation for the production of industrial enzymes. Curr Sci. 77(1):149–162.
  • Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. 2021. Aspects and recent trends in microbial α-amylase: a review. Appl Biochem Biotechnol. 193(8):2649–2698. doi:10.1007/s12010-021-03546-4.
  • Poveda J. 2021. Trichoderma as biocontrol agent against pests: new uses for a mycoparasite. Biol Control. 159:104634. doi: 10.1016/j.biocontrol.2021.104634.
  • Ranke FF, Shinya T, Figueiredo F, Núñez EG, Cabral H, De Oliva Neto P. 2020. Ethanol from rice byproduct using amylases secreted by Rhizopus microsporus var. Oligosporus. Enzyme partial purification and characterization. J Environ Manage. 266:110591. doi: 10.1016/j.jenvman.2020.110591.
  • Roy J, Rai S, Mukherjee A. 2012. Characterization and application of a detergent-stable alkaline α-amylase from Bacillus subtilis strain AS-s01a. Int J Biol Macromol. 50(1):219–229. doi:10.1016/j.ijbiomac.2011.10.026.
  • Ruan Y, Xu Y, Zhang W, Zhang R. 2020. A New Maltogenic amylase from Bacillus licheniformis R-53 significantly improves bread quality and extends shelf life. Food Chem. 344:128599. doi: 10.1016/j.foodchem.2020.128599.
  • Santos TC, Rocha TJO, Oliveira AC, Abreu-Filho G, Franco M. 2013. Aspergillus niger como produtor de enzimas celulolíticas a partir farelo de cacau (Theobroma cacao). Arq Inst Biol São Paulo. 80(1):65–71. doi: 10.1590/S1808-16572013000100010.
  • Sethi S, Gupta S. 2015. Isolation, characterization and optimization of cultural conditions for amylase production from fungi. J Global Biosci. 4(9):3356–3363.
  • Shuster A, Schmoll M. 2010. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 87:787–799. doi: 10.1007/s00253-010-2632-1.
  • Soccol C, Costa E, Letti L, Karp S, Woiciechowski A, Vandenberghe L. 2017. Recent developments and innovations in solid state fermentation. Biotechnol Res Innov. 1:52–71. doi: 10.1016/j.biori.2017.01.002.
  • Souza PMD, Magalhães PDO, de Oliveira P. 2010. Application of microbial α-amylase in industry-A review. Braz J Microbiol. 41:850–861. doi: 10.1590/S1517-83822010000400004.
  • Spacki DECK, Corrêa RCG, Uber TM, Barros L, Ferreira ICFR, Peralta RA, De Fátima Peralta Muniz Moreira R, Helm CV, De Lima EA, Bracht A, et al. 2022. Full exploitation of peach palm (bactris gasipaes Kunth.): state of the art and perspectives. Plants. 11:3175. doi: 10.3390/plants11223175.
  • Spier M, Woiciechowski A, Vandenbergh L, Soccol C. 2006. Production and characterization of amylases by Aspergillus niger under solid state fermentation using agro industrials products. Int J Food Eng. 2(3). doi: 10.2202/1556-3758.1116.
  • Vriesmann LC, Amboni RDMC, Petkowicz CLO. 2011. Cacao pod husks (theobroma cacao L.): composition and hot-water-soluble pectins. Ind Crops Prod. 34:1173–1181. doi: 10.1016/j.indcrop.2011.04.004.
  • Wu X, Wang Y, Tong B, Chen X, Chen J. 2018. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int J Biol Macromol. 109:329–337. doi: 10.1016/j.ijbiomac.2017.12.004.