Publication Cover
Mycology
An International Journal on Fungal Biology
Volume 15, 2024 - Issue 2
690
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Pleiotropic functions of SscA on the asexual spore of the human pathogenic fungus Aspergillus fumigatus

, , &
Pages 238-254 | Received 06 Oct 2023, Accepted 06 Dec 2023, Published online: 25 Dec 2023

References

  • Abad A, Fernandez-Molina JV, Bikandi J, Ramirez A, Margareto J, Sendino J, Hernando FL, Ponton J, Garaizar J, Rementeria A. 2010. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol. 27(4):155–182. doi: 10.1016/j.riam.2010.10.003.
  • Al-Bader N, Vanier G, Liu H, Gravelat FN, Urb M, Hoareau CM, Campoli P, Chabot J, Filler SG, Sheppard DC. 2010. Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun. 78(7):3007–3018. doi: 10.1128/IAI.00813-09.
  • Alves de Castro P, Valero C, Chiaratto J, Colabardini AC, Pardeshi L, Pereira Silva L, Almeida F, Campos Rocha M, Nascimento Silva R, Malavazi I, et al. 2021. Novel biological functions of the NsdC transcription factor in Aspergillus fumigatus. mBio. 12(1):e03102–20. doi:10.1128/mBio.03102-20.
  • Baltussen TJH, Zoll J, Verweij PE, Melchers WJG. 2019. Molecular mechanisms of conidial germination in Aspergillus spp. Microbiol Mol Biol Rev. 84(1):e00049–19. doi: 10.1128/MMBR.00049-19.
  • Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F. 2023. Chitin biosynthesis in Aspergillus species. J Fungi (Basel). 9(1):89. doi: 10.3390/jof9010089.
  • Brookman JL, Denning DW. 2000. Molecular genetics in Aspergillus fumigatus. Curr Opin Microbiol. 3(5):468–474. doi: 10.1016/S1369-5274(00)00124-7.
  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med. 4(165):165rv113. doi: 10.1126/scitranslmed.3004404.
  • Brown NA, Goldman GH. 2016. The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol. 54(3):243–253. doi: 10.1007/s12275-016-5510-4.
  • Bruder Nascimento AC, Dos Reis TF, de Castro, Hori JI, Bom VL, de Assis LJ, Ramalho LN, Rocha MC, Malavazi I, Brown NA, et al. 2016. Mitogen activated protein kinases SakA HOG1 and MpkC collaborate for Aspergillus fumigatus virulence. Mol Microbiol. 100(5):841–859. doi:10.1111/mmi.13354.
  • Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, et al. 2016. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol. 211(3):1035–1051. doi:10.1111/nph.13948.
  • Cramer RA, Rivera A, Hohl TM. 2011. Immune responses against Aspergillus fumigatus: what have we learned? Curr Opin Infect Dis. 24(4):315–322. doi: 10.1097/QCO.0b013e328348b159.
  • Dagenais TR, Keller NP. 2009. Pathogenesis of Aspergillus fumigatus in invasive Aspergillosis. Clin Microbiol Rev. 22(3):447–465. doi: 10.1128/CMR.00055-08.
  • de Castro PA, Colabardini AC, Moraes M, Horta MAC, Knowles SL, Raja HA, Oberlies NH, Koyama Y, Ogawa M, Gomi K, et al. 2022. Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genet. 18(1):e1009965. doi:10.1371/journal.pgen.1009965.
  • Dev R. 2021. Exploring small heat shock proteins (sHsps) for targeting drug resistance in Candida albicans and other pathogenic fungi. J Pure Appl Microbio. 15(1):20–28. doi: 10.22207/JPAM.15.1.42.
  • Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchell AP, Dongari-Bagtzoglou A, Davis D. 2011. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One. 6(1):e16218. doi: 10.1371/journal.pone.0016218.
  • Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. 2023. Pathogenicity and virulence of Aspergillus fumigatus. Virulence. 14(1):2172264. doi: 10.1080/21505594.2023.2172264.
  • Ejzykowicz DE, Solis NV, Gravelat FN, Chabot J, Li X, Sheppard DC, Filler SG. 2010. Role of Aspergillus fumigatus DvrA in host cell interactions and virulence. Eukaryot Cell. 9(10):1432–1440. doi: 10.1128/EC.00055-10.
  • Elieh Ali Komi D, Sharma L, Dela Cruz CS. 2018. Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol. 54(2):213–223. doi: 10.1007/s12016-017-8600-0.
  • Fabri J, Rocha MC, Fernandes CM, Persinoti GF, Ries LNA, da Cunha AF, Goldman GH, Del Poeta M, Malavazi I, Cunha AFD. 2021. The heat shock transcription factor HsfA is essential for thermotolerance and regulates cell wall integrity in Aspergillus fumigatus. Front Microbiol. 12:656548. doi: 10.3389/fmicb.2021.656548.
  • Fanning S, Xu W, Solis N, Woolford CA, Filler SG, Mitchell AP. 2012. Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot Cell. 11(7):896–904. doi: 10.1128/EC.00103-12.
  • Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE, Diaquin M, Latge JP. 2000. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem. 275(36):27594–27607. doi: 10.1074/jbc.M909975199.
  • Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N, de Oliveira HC. 2019. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol. 10:2993. doi: 10.3389/fmicb.2019.02993.
  • Ghiorse WC, Edwards MR. 1973. Ultrastructure of Aspergillus fumigatus conidia development and maturation. Protoplasma. 76(1):49–59. doi: 10.1007/BF01279672.
  • Gish SR, Maier EJ, Haynes BC, Santiago-Tirado FH, Srikanta DL, Ma CZ, Li LX, Williams M, Crouch EC, Khader SA, et al. 2016. Computational analysis reveals a key regulator of cryptococcal virulence and determinant of host response. mBio. 7(2):e00313–00316. doi:10.1128/mBio.00313-16.
  • Gow NAR, Latge JP, Munro CA, Heitman J. 2017. The fungal cell wall: Structure, biosynthesis, and function. Microbiol Spectr. 5(3):FUNK-0035–2016. doi: 10.1128/microbiolspec.FUNK-0035-2016.
  • Hagiwara D, Suzuki S, Kamei K, Gonoi T, Kawamoto S. 2014. The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genet Biol. 73:138–149. doi: 10.1016/j.fgb.2014.10.011.
  • Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S, Goldman GH. 2013. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS One. 8(12):e80881. doi: 10.1371/journal.pone.0080881.
  • Hohl TM, Feldmesser M. 2007. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot Cell. 6(11):1953–1963. doi: 10.1128/EC.00274-07.
  • Hohl TM, Van Epps HL, Rivera A, Morgan LA, Chen PL, Feldmesser M, Pamer EG, Cormack B. 2005. Aspergillus fumigatus triggers inflammatory responses by Stage-specific β-glucan display. PLoS Pathog. 1(3):e30. doi: 10.1371/journal.ppat.0010030.
  • Hopke A, Brown AJP, Hall RA, Wheeler RT. 2018. Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends Microbiol. 26(4):284–295. doi: 10.1016/j.tim.2018.01.007.
  • Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. 2021. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology. 12(4):296–324. doi: 10.1080/21501203.2021.1934176.
  • Lamarre C, Sokol S, Debeaupuis JP, Henry C, Lacroix C, Glaser P, Coppee JY, Francois JM, Latge JP. 2008. Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. Bmc Genom. 9(1):417. doi: 10.1186/1471-2164-9-417.
  • Latge JP. 1999. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 12(2):310–350. doi: 10.1128/CMR.12.2.310.
  • Latge JP. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol. 66(2):279–290. doi: 10.1111/j.1365-2958.2007.05872.x.
  • Lehmann PF, White LO. 1975. Chitin assay used to demonstrate renal localization and cortisone-enhanced growth of Aspergillus fumigatus mycelium in mice. Infect Immun. 12(5):987–992. doi: 10.1128/iai.12.5.987-992.1975.
  • Lin SJ, Schranz J, Teutsch SM. 2001. Aspergillosis case-fatality rate: Systematic review of the literature. Clin Infect Dis. 32(3):358–366. doi: 10.1086/318483.
  • Liu Z, Valsecchi I, Le Meur RA, Simenel C, Guijarro JI, Comte C, Muszkieta L, Mouyna I, Henrissat B, Aimanianda V, et al. 2023. Conidium specific polysaccharides in Aspergillus fumigatus. J Fungi (Basel). 9(2):155. doi:10.3390/jof9020155.
  • Mattern DJ, Schoeler H, Weber J, Novohradska S, Kraibooj K, Dahse HM, Hillmann F, Valiante V, Figge MT, Brakhage AA. 2015. Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus. Appl Microbiol Biotechnol. 99(23):10151–10161. doi: 10.1007/s00253-015-6898-1.
  • Min K, Neiman AM, Konopka JB. 2020. Fungal pathogens: shape-shifting invaders. Trends Microbiol. 28(11):922–933. doi: 10.1016/j.tim.2020.05.001.
  • Nayak AP, Croston TL, Lemons AR, Goldsmith WT, Marshall NB, Kashon ML, Germolec DR, Beezhold DH, Green BJ. 2018. Aspergillus fumigatus viability drives allergic responses to inhaled conidia. Ann Allergy Asthma Immunol. 121(2):200–210 e202. doi: 10.1016/j.anai.2018.04.008.
  • Park HS, Bayram O, Braus GH, Kim SC, Yu JH. 2012. Characterization of the velvet regulators in Aspergillus fumigatus. Mol Microbiol. 86(4):937–953. doi: 10.1111/mmi.12032.
  • Park HS, Man Yu Y, Lee MK, Jae Maeng P, Chang Kim S, Yu JH. 2015. Velvet-mediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci Rep. 5:10199. doi: 10.1038/srep10199.
  • Park HS, Yu JH. 2016. Developmental regulators in Aspergillus fumigatus. J Microbiol. 54(3):223–231. doi: 10.1007/s12275-016-5619-5.
  • Raffa N, Keller NP, Sheppard DC. 2019. A call to arms: mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog. 15(4):e1007606. doi: 10.1371/journal.ppat.1007606.
  • Ram AF, Klis FM. 2006. Identification of fungal cell wall mutants using susceptibility assays based on calcofluor white and Congo red. Nat Protoc. 1(5):2253–2256. doi: 10.1038/nprot.2006.397.
  • Ries LNA, Pardeshi L, Dong Z, Tan K, Steenwyk JL, Colabardini AC, Ferreira Filho JA, de Castro PA, Silva LP, Preite NW, et al. 2020. The Aspergillus fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-protection, and virulence. PLoS Pathog. 16(7):e1008645. doi:10.1371/journal.ppat.1008645.
  • Rocha MC, Fabri JH, Franco de Godoy K, Alves de Castro P, Hori JI, Ferreira da Cunha A, Arentshorst M, Ram AF, van den Hondel CA, Goldman GH, et al. 2016. Aspergillus fumigatus MADS-Box transcription factor rlmA is required for regulation of the cell wall integrity and virulence. G3 (Bethesda). 6(9):2983–3002. doi:10.1534/g3.116.031112.
  • Rocha MC, Fabri J, Simoes IT, Silva-Rocha R, Hagiwara D, da Cunha AF, Goldman GH, Canovas D, Malavazi I. 2020. The cell wall integrity pathway contributes to the early stages of Aspergillus fumigatus asexual development. Appl Environ Microbiol. 86(7):e02347–19. doi: 10.1128/AEM.02347-19.
  • Schrettl M, Carberry S, Kavanagh K, Haas H, Jones GW, Oʹbrien J, Nolan A, Stephens J, Fenelon O, Doyle S, et al. 2010. Self-protection against gliotoxin — A component of the gliotoxin biosynthetic cluster, gliT, completelyprotects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathog. 6(6):e1000952. doi: 10.1371/journal.ppat.1000952.
  • Schruefer S, Bohmer I, Dichtl K, Spadinger A, Kleinemeier C, Ebel F. 2021. The response regulator Skn7 of Aspergillus fumigatus is essential for the antifungal effect of fludioxonil. Sci Rep. 11(1):5317. doi: 10.1038/s41598-021-84740-6.
  • Shi DY, Ren WC, Wang J, Zhang J, Mbadianya JI, Mao XW, Chen CJ. 2021. The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum. J Integr Agr. 20(8):2156–2169. English. doi:10.1016/S2095-3119(20)63339-1.
  • Son YE, Park HS. 2020. Genome wide analysis reveals the role of vada in stress response, germination, and sterigmatocystin production in Aspergillus nidulans conidia. Microorganisms. 8(9):1319. doi: 10.3390/microorganisms8091319.
  • Son YE, Yu JH, Park HS 2023a. The novel spore-specific regulator SscA controls Aspergillus conidiogenesis. mBio. e01840–01823.
  • Son YE, Yu JH, Park HS. 2023b. Regulators of the asexual life cycle of Aspergillus nidulans. Cells. 12(11):1544. doi: 10.3390/cells12111544.
  • Tiwari S, Thakur R, Shankar J. 2015. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int. 2015:132635. doi: 10.1155/2015/132635.
  • Tomee JF, Kauffman HF. 2000. Putative virulence factors of Aspergillus fumigatus. Clin Exp Allergy. 30(4):476–484. doi: 10.1046/j.1365-2222.2000.00796.x.
  • Valiante V, Macheleidt J, Foge M, Brakhage AA. 2015. The Aspergillus fumigatus cell wall integrity signaling pathway: Drug target, compensatory pathways, and virulence. Front Microbiol. 6:325. doi: 10.3389/fmicb.2015.00325.
  • Valsecchi I, Sarikaya-Bayram O, Wong Sak Hoi J, Muszkieta L, Gibbons J, Prevost MC, Mallet A, Krijnse-Locker J, Ibrahim-Granet O, Mouyna I, et al. 2017. MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen Aspergillus fumigatus. Mol Microbiol. 105(6):880–900. doi:10.1111/mmi.13744.
  • van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latge JP. 2017. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol. 15(11):661–674. doi: 10.1038/nrmicro.2017.90.
  • Wang DN, Toyotome T, Muraosa Y, Watanabe A, Wuren T, Bunsupa S, Aoyagi K, Yamazaki M, Takino M, Kamei K. 2014. GliA in Aspergillus fumigatus is required for its tolerance to gliotoxin and affects the amount of extracellular and intracellular gliotoxin. Med Mycol. 52(5):506–518. doi: 10.1093/mmy/myu007.
  • Wang F, Sethiya P, Hu X, Guo S, Chen Y, Li A, Tan K, Wong KH. 2021. Transcription in fungal conidia before dormancy produces phenotypically variable conidia that maximize survival in different environments. Nat Microbiol. 6(8):1066–1081. doi: 10.1038/s41564-021-00922-y.
  • Wu J, Wang M, Zhou L, Yu D. 2016. Small heat shock proteins, phylogeny in filamentous fungi and expression analyses in Aspergillus nidulans. Gene. 575(2 Pt 3):675–679. doi: 10.1016/j.gene.2015.09.044.
  • Xiao P, Shin KS, Wang T, Yu JH. 2010. Aspergillus fumigatus flbB encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production. Eukaryot Cell. 9(11):1711–1123. doi: 10.1128/EC.00198-10.
  • Xue T, Nguyen CK, Romans A, Kontoyiannis DP, May GS. 2004. Isogenic auxotrophic mutant strains in the Aspergillus fumigatus genome reference strain AF293. Arch Microbiol. 182(5):346–353. doi: 10.1007/s00203-004-0707-z.
  • Yu JH. 2010. Regulation of development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology. 38(4):229–237. doi: 10.4489/MYCO.2010.38.4.229.
  • Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C. 2004. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 41(11):973–981. doi: 10.1016/j.fgb.2004.08.001.
  • Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A, Mitchell AP. 2010. Fungal cell gigantism during mammalian infection. PLoS Pathog. 6(6):e1000945. doi: 10.1371/journal.ppat.1000945.