5,160
Views
13
CrossRef citations to date
0
Altmetric
Signature Reviews

Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments

& ORCID Icon

References

  • Frame JD, Gocke DJ, Baldwin JM, et al. Lassa fever, a new virus disease of man from West Africa. Am J Trop Med Hyg. 1970;19(4):670–676.
  • Brisse M, Ly H. Comparative structure and function analysis of the RIG-I-Like receptors: RIG-I and MDA5. Front Immunol. 2019;10. DOI:10.3389/fimmu.2019.01586.
  • Ibekwe T, Okokhere P, Nwegbu M, et al. Early-Onset sensorineural hearing loss in Lassa fever. Otolaryngol Head Neck Surg. 2010;143(2_suppl):232.
  • Gunther S, Lenz O. Lassa Virus. Crit Rev Clin Lab Sci. 2004;357. DOI:10.1080/10408360490497456.
  • Lassa Fever | CDC. (2019, January 31). Retrieved 2021 Jan 27, from https://www.cdc.gov/vhf/lassa/index.html
  • Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496 (7446):504–507.
  • Jing Q, Wang M. Dengue epidemiology. Global Health J. 2019;3(2):37–45.
  • Lukashevich IS, Paessler S, De La Torre JC. Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Res. 2019;8:134.
  • Mylne AQN, Pigott DM, Longbottom J, et al. Mapping the zoonotic niche of Lassa fever in Africa. Trans R Soc Trop Med Hyg. 2015;109(8):483–492.
  • Kuhn J, Zhou X, Alioto D. 2020 taxonomic update for phylum negarnaviricota (Riboviria: orthornavirae), including the large orders bunyavirales and mononegavirales. Arch Virol. 2020;165(12):3023–3072.
  • Radoshitzky SR, Bào YĪ, Buchmeier MJ, et al. Past, present, and future of arenavirus taxonomy. Arch Virol. 2015;160(7):1851–1874.
  • Radoshitzky SR, Buchmeier MJ, Charrel RN, et al. ICTV virus taxonomy profile: arenaviridae. J Gen Virol. 2019;100(8):1200–1201.
  • Ibukun FI. Inter-Lineage variation of lassa virus glycoprotein epitopes: a challenge to Lassa virus vaccine development. Viruses. 2020;12(4):386.
  • Oloniniyi OK, Unigwe US, Okada S, et al. Genetic characterization of Lassa virus strains isolated from 2012 to 2016 in southeastern Nigeria. PLoS Negl Trop Dis. 2018;12(11):e0006971.
  • Ehichioya DU, Dellicour S, Pahlmann M, et al. Phylogeography of Lassa Virus in Nigeria. J Virol. 2019;93(21): N/A. DOI:10.1128/jvi.00929-19.
  • Forni D, Sironi M. Population structure of Lassa mammarenavirus in West Africa. Viruses. 2020;12(4):437.
  • Bowen MD, Rollin PE, Ksiazek TG, et al. Genetic diversity among Lassa virus strains. J Virol. 2000;74 (15):6992–7004.
  • Huang Q, Liu X, Brisse M, et al. Effect of strain variations on Lassa virus Z protein-mediated human RIG-I inhibition. Viruses. 2020;12(9):907.
  • Xing J, Ly H, Liang Y. The Z proteins of pathogenic but not nonpathogenic arenaviruses Inhibit RIG-i-Like receptor-dependent interferon production. J Virol. 2014;89(5):2944–2955.
  • Auperin DD, Romanowski V, Galinski M, et al. Sequencing studies of pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol. 1984;52(3):897–904.
  • Campbell Dwyer EJ, Lai HK, MacDonald RC, et al. The Lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING-dependent manner. J Virol. 2000;74(7):3293–3300.
  • Fan L, Briese T, Lipkin WI. Z proteins of new world arenaviruses bind RIG-I and interfere with type i interferon induction. J Virol. 2009;84(4):1785–1791.
  • Fehling S, Lennartz F, Strecker T. Multifunctional nature of the arenavirus RING finger protein Z. Viruses. 2012;4(11):2973–3011.
  • Volpon L, Osborne MJ, Capul AA, et al. Structural characterization of the Z RING-eIF4E complex reveals a distinct mode of control for eIF4E. Proc Nat Acad Sci. 2010;107(12):5441–5446.
  • Hastie KM, Kimberlin CR, Zandonatti MA, et al. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3ʹ to 5ʹ exonuclease activity essential for immune suppression. Proc Nat Acad Sci. 2011;108 (6):2396–2401.
  • Qi X, Lan S, Wang W, et al. Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature. 2010;468(7325):779–783.
  • Cao W, Henry MD, Borrow P. Identification of - dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science. 1998;282 (5396):2079–2081.
  • Kunz S, Campbell KP, Oldstone MBA. α-Dystroglycan can mediate arenavirus infection in the absence of β- dystroglycan. Virology. 2003;316(2):213–220.
  • Jae LT, Raaben M, Herbert AS, et al. Lassa virus entry requires a trigger-induced receptor switch. Science. 2014;344(6191):1506–1510.
  • Hulseberg CE, Fénéant L, Szymańska KM, et al. Lamp1 increases the efficiency of lassa virus infection by promoting fusion in less acidic endosomal compartments. MBio. 2018;9(1): N/A. DOI:10.1128/mbio.01818-17.
  • Singh MK, Fuller-Pace FV, Buchmeier MJ, et al. Analysis of the genomic l rna segment from lymphocytic choriomeningitis virus. Virology. 1987;161 (2):448–456.
  • Wallat GD, Huang Q, Wang W, et al. High-Resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase in complex with magnesium ions. PLoS ONE. 2014;9(2):e87577.
  • Leung WC, Ghosh HP, Rawls WE. Journal of virology. Strandedness Pichinde Virus RNA. 1977;22 (1):235–237.
  • Pinschewer DD, Perez M, De La Torre JC. Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication. J Virol. 2003;77(6):3882–3887.
  • King BR, Samacoits A, Eisenhauer PL, et al. Visualization of arenavirus RNA species in individual cells by single-molecule fluorescencein situhybridization suggests a model of cyclical infection and clearance during persistence. J Virol. 2018;92(12): N/A. DOI:10.1128/jvi.02241-17.
  • Beyer WR, Pöpplau D, Garten W, et al. Endoproteolytic Process Lymphocytic Choriomeningitis Virus Glycoprotein Subtilase SKI-1/S1P. Journal of virology. 2003;77(5):2866–2872.
  • Eichler R, Lenz O, Strecker T, et al. Identification of Lassa virus glycoprotein signal peptide as a trans -acting maturation factor. EMBO Rep. 2003;4(11):1084–1088.
  • Eichler R, Lenz O, Strecker T, et al. Signal peptide of Lassa virus glycoprotein GP-C exhibits an unusual length. FEBS Lett. 2003;538(1–3):203–206.
  • Kunz S, Edelmann KH, De La Torre J-C, et al. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology. 2003;314(1):168–178.
  • York J, Romanowski V, Lu M, et al. The signal peptide of the junín arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1-G2 complex. J Virol. 2004;78 (19):10783–10792.
  • Lenz O, Ter Meulen J, Klenk H-D, et al. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Nat Acad Sci. 2001;98(22):12701–12705.
  • Torriani G, Galan-Navarro C, Kunz S. Lassa virus cell entry reveals new aspects of virus-host cell interaction. J Virol. 2017;91(4). DOI:10.1128/jvi.01902-16
  • A Trial to Evaluate the Optimal Dose of MV-LASV - No Study Results Posted - ClinicalTrials.gov. (2021, January 27). Retrieved 2021 Feb 18, from https://clinicaltrials.gov/ct2/show/results/NCT04055454
  • Messina EL, York J, Nunberg JH. Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion. J Virol. 2012;86 (11):6138–6145.
  • Rojek JM, Kunz S. Cell entry by human pathogenic arenaviruses. Cell Microbiol. 2008;10(4):828–835.
  • Von Heijne G. Signal sequences. J Mol Biol. 1985;184 (1):99–105.
  • Lyko F, Martoglio B, Jungnickel B, et al. Signal Sequence processing in rough microsomes. J Biol Chem. 1995;270(34):19873–19878.
  • Froeschke M, Basler M, Groettrup M, et al. Long-lived signal peptide of lymphocytic choriomeningitis virus glycoprotein pGP-C. J Biol Chem. 2003;278 (43):41914–41920.
  • Urata S, Yasuda J. Molecular mechanism of arenavirus assembly and budding. Viruses. 2012;4(10):2049–2079.
  • Perez M, Craven RC, De La Torre JC. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Nat Acad Sci. 2003;100(22):12978–12983.
  • Lassa fever. (2017, July 31). Retrieved 2021 Jun 28, from https://www.who.int/news-room/fact-sheets/detail/lassa-fever
  • loIacono G, Cunningham AA, Fichet-Calvet E, et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of Lassa fever. PLoS Negl Trop Dis. 2015;9(1):e3398.
  • Forni D, Pontremoli C, Pozzoli U, et al. Ancient evolution of mammarenaviruses: adaptation via changes in the L protein and no evidence for host–virus codivergence. Genome Biol Evol. 2018;10(3):863–874.
  • Agbonlahor DE, Erah A, Uhunmwangho J. Prevalence of Lassa virus among rodents trapped in three South-South States of Nigeria. J Vector Borne Dis. 2017;54(2):146–150. Retrievedfromhttps://www.jvbd.org/temp/JVectorBorneDis542146-5766983_160109.pdf
  • Olayemi A, Cadar D, Magassouba NF, et al. New Hosts of The Lassa Virus. Sci Rep. 2016;6(1): N/A. DOI:10.1038/srep25280.
  • Leirs H, Verhagen R, Verheyen W. The basis of reproductive seasonally in mastomys rats (Rodentia: muridae) in Tanzania. J Trop Ecol. 1994;10(1):55–66.
  • Richmond JK. Lassa fever: epidemiology, clinical features, and social consequences. BMJ. 2003;327 (7426):1271–1275.
  • Largest-ever Lassa fever research programme launches in West Africa –. (2020, December 18). Retrieved 2021 Jun 27, from https://cepi.net/news_cepi/largest-ever-lassa-fever-research-programme-launches-in-west-africa/
  • Mateer EJ, Huang C, Shehu NY, et al. Lassa fever– induced sensorineural hearing loss: a neglected public health and social burden. PLoS Negl Trop Dis. 2018;12 (2):e0006187.
  • Yaro CA, Kogi E, Opara KN, et al. Infection pattern, case fatality rate and spread of Lassa virus in Nigeria. BMC Infect Dis. 2021;21(1): N/A. 10.1186/s12879-021-05837-x.
  • Greenky D, Knust B, Dziuban EJ. What pediatricians should know about lassa virus. J AMA Pediatr. 2018;172(5):407.
  • McCormick JB (2008). Encyclopedia of virology [EPub] ( Third ed., Vol. 2. 10.1016/B978-012374410-4.00436-2.
  • Webb PA, McCormick JB, King IJ, et al. Lassa fever in children in Sierra Leone, West Africa. Trans R Soc Trop Med Hyg. 1986;80(4):577–582.
  • Workshop WHO. (2018 Accessed 23 November 2021, April). “Efficacy trials of Lassa Therapeutics: endpoints, trial design, site selection. Retrieved from https://www.who.int/docs/default-source/blue-print/lassa-therapeutics-workshop-april-25-2018.pdf?sfvrsn=fb777089_2
  • Yuill TM & University of Wisconsin-Madison. (2020, March). Lassa Fever. Retrieved 2020 Dec 10, from https://www.merckmanuals.com/professional/infectious-diseases/arboviruses-arenaviridae-and-filoviridae/lassa-fever
  • Johnson KM, McCormick JB, Webb PA, et al. Clinical virology of Lassa fever in hospitalized patients. J Infect Dis. 1987;155(3):456–464.
  • Kayem ND, Benson C, Aye CYL, et al. Lassa fever in pregnancy: a systematic review and meta-analysis. Trans R Soc Trop Med Hyg. 2020;114(5):385–396.
  • Asogun DA, Adomeh DI, Ehimuan J, et al. Molecular diagnostics for Lassa fever at irrua specialist teaching hospital, Nigeria: lessons learnt from two years of laboratory operation. PLoS Negl Trop Dis. 2012;6(9):e1839.
  • Branco LM, Grove JN, Geske FJ, et al. Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virol J. 2010;7(1):279.
  • Bello OO, Akinajo OR, Odubamowo KH, et al. (2016). Lassa fever in pregnancy: report of 2 cases seen at the university college hospital, Ibadan. Case Reports in Obstetrics and Gynecology, 2016, 1–3.
  • Khan SH, Goba A, Chu M, et al. New opportunities for field research on the pathogenesis and treatment of Lassa fever. Antiviral Res. 2008;78(1):103–115.
  • Agboeze J, Nwali MI, Nwakpakpa E, et al. Lassa fever in pregnancy with a positive maternal and fetal outcome: a case report. Inter J Infect Dis. 2019;89:84–86.
  • Branco LM, Boisen ML, Andersen KG, et al. Lassa hemorrhagic fever in a late term pregnancy from northern Sierra Leone with a positive maternal outcome: case report. Virol J. 2011;8(1):404.
  • Okogbenin S, Okoeguale J, Akpede G, et al. Retrospective cohort study of lassa fever in pregnancy, Southern Nigeria. Emerg Infect Dis. 2019;25 (8):1494–1500.
  • Akhuemokhan OC, Ewah-Odiase RO, Akpede N, et al. Prevalence of Lassa Virus Disease (LVD) in Nigerian children with fever or fever and convulsions in an endemic area. PLoS Negl Trop Dis. 2017;11(7): e0005711.
  • Ogunkunle TO, Bello SO, Anderson CI, et al. Fatal case of newborn Lassa fever virus infection mimicking late onset neonatal sepsis: a case report from northern Nigeria. Infect Dis Poverty. 2020;9(1): N/A. DOI:10.1186/s40249-020-00731-1.
  • Monson MH, Frame JD, Cole AK, et al. Pediatric Lassa fever: a review of 33 Liberian cases. Am J Trop Med Hyg. 1987;36(2):408–415.
  • Akpede GO, Kayode-Adedeji BO, Dawodu SO. Manifestations and outcomes of lassa fever in Nigerian children: a case series. Arch Dis Child. 2012;97(Suppl1):A38.3–A39.
  • Sattler RA, Paessler S, Ly H, et al. Animal Models of Lassa Fever. Pathogens. 2020;9(3):197.
  • Walker DH, McCormick JB. Pathologic and virologic study of fatal Lassa fever in man. Am J Pathol: Cell Mol Biol Dis, 1982;107(3):349–356. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1916239/
  • McCormick JB, King IJ, Webb PA, et al. Lassa Fever. N Engl J Med. 1986; 314(1):20–26.[82]Cummins D. Acute sensorineural deafness in Lassa fever. J AMA. 1990;264(16):2093–2096.
  • Cummins D. Acute sensorineural deafness in Lassa fever. J AMA. 1990;264(16):2093–2096.
  • Härkönen K, Kivekäs I, Rautiainen M, et al. Quality of life and hearing eight years after sudden sensorineural hearing loss. Laryngoscope. 2016;127(4):927–931.
  • Wilson WR, Veltri RW, Laird N, et al. Viral and epidemiologic studies of idiopathic sudden hearing loss. Otolaryngol Head Neck Surg. 1983;91(6):653–658.
  • Okokhere PO, Ibekwe TS, Akpede GO. Sensorineural hearing loss in Lassa fever: two case reports. J Med Case Rep. 2009;3(1):N/A. 10.1186/1752-1947-3-36.
  • Ficenec SC, Percak J, Arguello S, et al. Lassa fever induced hearing loss: the neglected disability of hemorrhagic fever. Inter J Infect Dis. 2020;100:82–87.
  • Mertens PE, Patton R, Baum JJ, et al. Clinical presentation of lassa fever cases during the hospital epidemic at Zorzor, Liberia, March-April 1972 *. Am J Trop Med Hyg. 1973;22(6):780–784.
  • White HA. Lassa fever A study of 23 hospital cases. Trans R Soc Trop Med Hyg. 1972;66(3):390–398.
  • Yun NE, Ronca S, Tamura A, et al. Animal model of sensorineural hearing loss associated with Lassa virus infection. J Virol. 2015;90(6):2920–2927.
  • Cashman KA, Wilkinson ER, Zeng X, et al. Immune- mediated systemic vasculitis as the proposed cause of sudden-onset sensorineural hearing loss following Lassa virus exposure in cynomolgus macaques. MBio. 2018;9(5): N/A.10.1128/mbio.01896-18.
  • Töndury G, Smith DW. Fetal rubella pathology. J Pediatr. 1966; 68(6):867–879.[92]Webster WS. Teratogen update: congenital rubella. Teratology. 1998;58(1):13–23.
  • Webster WS. Teratogen update: congenital rubella. Teratology. 1998;58(1):13–23.
  • Hensley LE, Smith MA, Geisbert JB, et al. Pathogenesis of lassa fever in cynomolgus macaques. Virol J. 2011;8 (1):205.
  • Lukashevich IS, Maryankova R, Vladyko AS, et al. Lassa and mopeia virus replication in human monocytes/macrophages and in endothelial cells: different effects on IL-8 and TNF-? gene expression.J Med Virol. 1999;59(4):552–560.
  • Mahanty S, Hutchinson K, Agarwal S, et al. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol. 2003;170(6):2797–2801.
  • Walker DH, Lange JV, Murphy FA. Comparative pathology of Lassa virus infection in monkeys, Guinea-pigs, and Mastomys natalensis. Bull World Health Organ. 1975;53(4–6):523–534.Retrievedfromhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366626/
  • Baize S, Kaplon J, Faure C, et al. Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol. 2004;172 (5):2861–2869.
  • Hawiger D, Inaba K, Dorsett Y, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194 (6):769–780.
  • Baize S, Marianneau P, Loth P, et al. Early and strong immune responses are associated with control of viral replication and recovery in Lassa virus-infected cynomolgus monkeys. J Virol. 2009;83(11):5890–5903.
  • Hallam HJ, Hallam S, Rodriguez SE, et al. Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development. Npj Vaccines. 2018;3(1): N/A. DOI:10.1038/s41541-018-0049-5.
  • Günther S, Kühle O, Rehder D, et al. Antibodies to Lassa virus Z protein and nucleoprotein co-occur in human sera from Lassa fever endemic regions. Med Microbiol Immunol. 2001;189(4):225–229.
  • Meulen J, Badusche M, Kuhnt K, et al. Characterization of Human CD4+ T-Cell clones recognizing conserved and variable epitopes of the lassa virus nucleoprotein. J Virol. 2000;74(5):2186–2192.
  • Yun NE, Walker DH. Pathogenesis of Lassa fever. Viruses. 2012;4(10):2031–2048.
  • Fisher-Hoch SP, Hutwagner L, Brown B, et al. Effective vaccine for Lassa fever. J Virol. 2000;74(15):6777–6783.
  • Lukashevich IS, Carrion R, Salvato MS, et al. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates. Vaccine. 2008;26(41):5246–5254.
  • Flatz L, Rieger T, Merkler D, et al. T cell-dependence of Lassa fever pathogenesis. PLoS Pathog. 2010;6(3): e1000836.
  • Maurice NJ, McElrath MJ, Andersen-Nissen E, et al. CXCR3 enables recruitment and site-specific bystander activation of memory CD8+ T cells. Nat Commun. 2019;10(1): N/A. DOI:10.1038/s41467-019-12980-2.
  • Port JR, Wozniak DM, Oestereich L, et al. Severe human Lassa fever is characterized by nonspecific T-cell activation and lymphocyte homing to inflamed tissues. J Virol. 2020;94(21): N/A. DOI:10.1128/jvi.01367-20.
  • Ostler T, Pircher H, Ehl S. Bystander” recruitment of systemic memory T cells delays the immune response to respiratory virus infection. Eur J Immunol. 2003;33 (7):1839–1848.
  • Oestereich L, Rieger T, Lüdtke A, et al. Efficacy of favipiravir alone and in combination with ribavirin in a lethal, immunocompetent mouse model of lassa fever. J Infect Dis. 2015;213(6):934–938.
  • Meyer B, Groseth A. Apoptosis during arenavirus infection: mechanisms and evasion strategies. Microbes Infect. 2018;20(2):65–80.
  • Huang Q, Shao J, Lan S, et al. VitroandIn VivoCharacterizations of pichinde viral nucleoprotein exoribonuclease functions. J Virol. 2015;89 (13):6595–6607.
  • Reynard S, Russier M, Fizet A, et al. Exonuclease domain of the Lassa virus nucleoprotein is critical to avoid RIG-I signaling and to inhibit the innate immune response. J Virol. 2014;88(23):13923–13927.
  • Rodrigo WWSI, Ortiz-Riano E, Pythoud C, et al. Arenavirus Nucleoproteins Prevent Activation of Nucl Factor Kappa B. Journal of Virology. 2012;86 (15):8185–8197.
  • Carnec X, Baize S, Reynard S, et al. Lassa virus nucleoprotein mutants generated by reverse genetics induce a robust type I interferon response in human dendritic cells and macrophages. J Virol. 2011;85 (22):12093–12097.
  • Prescott JB, Marzi A, Safronetz D, et al. Immunobiology of Ebola and Lassa virus infections. Nat Rev Immunol. 2017;17(3):195–207.
  • Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020;20(9):537–551.
  • Stott RJ, Strecker T, Foster TL. Distinct molecular mechanisms of host immune response modulation by arenavirus NP and Z proteins. Viruses. 2020;12(7):784.
  • Bevilacqua PC, George CX, Samuel CE, et al. Binding of the protein kinase PKR to RNAs with secondary structure defects: role of the tandem A−G mismatch and noncontiguous helixes†. Biochemistry. 1998;37 (18):6303–6316.
  • Huang C, Kolokoltsova OA, Mateer EJ, et al. Highly pathogenic new world arenavirus infection activates the pattern recognition receptor protein Kinase R without attenuating virus replication in human cells. J Virol. 2017;91(20). DOI:10.1128/jvi.01090-17.
  • Mateer EJ, Maruyama J, Card GE, et al. Lassa virus, but not highly pathogenic new world arenaviruses, restricts immunostimulatory double-stranded RNA accumulation during infection. J Virol. 2020;94(9). DOI:10.1128/jvi.02006-19.
  • Loureiro ME, Zorzetto-Fernandes AL, Radoshitzky S, et al. DDX3 suppresses type I interferons and favors viral replication during Arenavirus infection. PLoS Pathog. 2018;14(7):e1007125.
  • Garcia-Sastre A, Biron CA. Type 1 interferons and the virus-host relationship: a lesson in detente. Science. 2006;312(5775):879–882.
  • Marie I. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 1998;17 (22):6660–6669.
  • Mariën J, Borremans B, Gryseels S, et al. No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions. Parasit Vectors. 2017;10(1):1.
  • Maruyama J, Manning JT, Mateer EJ, et al. Lethal infection of Lassa virus isolated from a human clinical sample in outbred guinea pigs without adaptation. MSphere. 2019;4(5). DOI:10.1128/msphere.00428-19
  • Maruyama J, Mateer EJ, Manning JT, et al. Adenovirus vector-based vaccine is fully protective against lethal Lassa fever challenge in Hartley Guinea pigs. Vaccine. 2019;37(45):6824–6831.
  • Oestereich L, Lüdtke A, Ruibal P, et al. Chimeric mice with competent hematopoietic immunity reproduce key features of severe Lassa fever. PLoS Pathog. 2016;12(5):e1005656.
  • Golden JW, Hammerbeck CD, Mucker EM, et al. Animal models for the study of rodent-borne hemorrhagic fever viruses: arenaviruses and hantaviruses. Biomed Res Int. 2015;(2015:1–31.
  • Jahrling PB, Hesse RA, Eddy GA, et al. Lassa virus infection of rhesus monkeys: pathogenesis and treatment with Ribavirin. J Infect Dis. 1980;141(5):580–589.
  • Lange JV, Mitchell SW, Evatt BL, et al. Kinetic study of platelets and fibrinogen in Lassa virus-infected monkeys and early pathologic events in Mopeia virus-infected monkeys. Am J Trop Med Hyg. 1985;34(5):999–1007.
  • Lan S, Shieh WJ, Huang Q, et al. Virulent infection of outbred hartley guinea pigs with recombinant pichinde virus as a surrogate small animal model for human Lassa fever. Virulence. 2020;11(1):1131–1141.
  • Shieh WJ, Lan S, Zaki SR, et al. Pichinde virus infection of outbred Hartley Guinea pigs as a surrogate animal model for human Lassa fever: histopathological and immunohistochemical analyses. Pathogens. 2020;9 (7):579.
  • Lingas G, Rosenke K, Safronetz D, et al. Lassa viral dynamics in non-human primates treated with favipiravir or ribavirin. PLoS Comput Biol. 2021;17(1): e1008535.
  • Hoffmann C, Wurr S, Pallasch E, et al. Experimental morogoro virus infection in its natural host, mastomys natalensis. Viruses. 2021;13(5):851. doi:10.3390/v13050851
  • Tang-Huau, T. L., Rosenke, K., Meade-White, K., Carmody, A., Smith, B. J., Bosio, C. M., Feldmann, H. (2021). Mastomys natalensis Has a Cellular Immune Response Profile Distinct from Laboratory Mice. Viruses, 13(5), 729. https://doi.org/10.3390/v13050729
  • sNiedrig M, Schmitz H, Becker S, et al. First international quality assurance study on the rapid detection of viral agents of bioterrorism. J Clin Microbiol. 2004;42 (4):1753–1755.
  • Raabe V, Koehler J, Kraft CS. Laboratory diagnosis of Lassa fever. J Clin Microbiol. 2017;55(6):1629–1637.
  • Mazzola LT, Kelly-Cirino C. Diagnostics for Lassa fever virus: a genetically diverse pathogen found in low-resource settings. BMJ Glob Health. 2019;4 (Suppl2):e001116.
  • Boisen ML, Hartnett JN, Shaffer JG, et al. Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever. Sci Rep. 2018;8(1): N/A. DOI:10.1038/s41598-018-24246-w.
  • Ter Meulen J, Koulemou K, Wittekindt T, et al. Detection of Lassa virus antinucleoprotein Immunoglobulin G (IgG) and IgM antibodies by a simple recombinant immunoblot assay for field use. J Clin Microbiol. 1998;36(11):3143–3148.
  • Happi AN, Happi CT, Schoepp RJ. Lassa fever diagnostics: past, present, and future. Curr Opin Virol. 2019;37:132–138.
  • Satterly NG, Voorhees MA, Ames AD, et al. Comparison of MagPix assays and enzyme-linked immunosorbent assay for detection of hemorrhagic fever viruses. J Clin Microbiol. 2016;55(1):68–78.
  • Adams NM, Creecy AE, Majors CE, et al. Design criteria for developing low-resource magnetic bead assays using surface tension valves. Biomicrofluidics. 2013;7(1):014104.
  • He J, Kraft A, Fan J, et al. Simultaneous detection of CDC Category “A” DNA and RNA bioterrorism agents by use of multiplex PCR & RT-PCR enzyme hybridization assays. Viruses. 2009;1(3):441–459.
  • Quan P-L, Palacios G, Jabado OJ, et al. Detection of respiratory viruses and subtype identification of influenza A viruses by greenechipresp oligonucleotide microarray. J Clin Microbiol. 2007;45(8):2359–2364.
  • Khan JA, Rehman S, Fisher-Hoch SP, et al. Crimean Congo-Haemorrhagic fever treated with oral ribavirin. Lancet. 1995;346(8973):472–475.
  • Mardani M, Jahromi MK, Naieni KH, et al. The efficacy of Oral Ribavirin in the treatment of crimean-congo hemorrhagic fever in Iran. Clinl Infect Dis. 2003;36(12):1613–1618.
  • Eberhardt KA, Mischlinger J, Jordan S, et al. Ribavirin for the treatment of Lassa fever: a systematic review and meta-analysis. Inter J Infect Dis. 2019;87:15–20.
  • Bausch D, Hadi C, Khan S, et al. Review of the literature and proposed guidelines for the use of oral ribavirin as postexposure prophylaxis for Lassa fever. Clinl Infect Dis. 2010;51(12):1435–1441.
  • Bell TM, Shaia CI, Bearss JJ, et al. Temporal progression of lesions in guinea pigs infected with Lassa virus. Vet Pathol. 2016;54(3):549–562.
  • Falzaran D, Bente D. Animal models for viral haemorrhagic fever. Clin Microbiol Infect. 2019;21:e17–e27.
  • World Health Organization. (2016). Clinical management of patients with viral haemorrhagic fever: a pocket guide for front-line health workers. interim emergency guidance for Country adaption (2nd ed.). Geneva, Switzerland: World Health Organization.
  • Ribavirin - LiverTox - NCBI Bookshelf. (2018, June 10). Retrieved 2021 Mar 30, from https://www.ncbinlm.nih.gov/books/NBK548115/
  • Cashman KA, Smith MA, Twenhafel NA, et al. Evaluation of Lassa antiviral compound ST-193 in a Guinea pig model. Antiviral Res. 2011;90(1):70–79.
  • Gary JM, Welch SR, Ritter JM, et al. Lassa virus targeting of anterior uvea and endothelium of cornea and conjunctiva in eye of guinea pig model. Emerg Infect Dis. 2019;25(5):865–874.
  • Safronetz D, Rosenke K, Westover JB, et al. The broad- spectrum antiviral favipiravir protects Guinea pigs from lethal Lassa virus infection post-disease onset. Sci Rep. 2015;5(1). DOI:10.1038/srep14775.
  • Jahrling PB, Peters CJ. Passive antibody therapy of Lassa fever in cynomolgus monkeys: importance of neutralizing antibody and Lassa virus strain. Infect Immun. 1984;44(2):528–533.
  • Stephen E, Jahrling P (1979). Ribavirin treatment of Toga-, Arena- and Bunyavirus infections in subhuman primates and other laboratory animal species. U.S. Army Medical Research Institute of Infectious Disease. Published. Retrievedfromhttps://apps.dtic.mil/sti/citations/ADA083561
  • Rosenke K, Feldmann H, Westover JB, et al. Use of favipiravir to treat Lassa Virus infection in macaques. Emerg Infect Dis. 2018;24(9):1696–1699.
  • Herring S, Oda JM, Wagoner J, et al. Inhibition of arenaviruses by combinations of orally available approved drugs. Antimicrob Agents Chemother. 2021. doi:10.1128/aac.01146-20
  • Hulseberg CE, Fénéant L, Szymańska-de Wijs KM, et al. Arbidol and other low-molecular-weight drugs that inhibit Lassa and Ebola viruses. J Virol. 2019;93(8). DOI: 10.1128/jvi.02185-18.
  • Kumar N, Sharma S, Kumar R, et al. Host-directed antiviral therapy. Clin Microbiol Rev. 2020;33(3).10.1128/cmr.00168-19.
  • Müller S, Günther S. Broad-Spectrum antiviral activity of small interfering RNA targeting the conserved RNA termini of Lassa virus. Antimicrob Agents Chemother. 2007;51(6):2215–2218.
  • Buchmeier MJ, Lewicki HA, Tomori O, et al. Monoclonal antibodies to lymphocytic choriomeningitis virus react with pathogenic arenaviruses. Nature. 1980;288(5790):486–487.
  • Frame JD, Verbrugge GP, Gill RG, et al. The use of Lassa fever convalescent plasma in Nigeria. Trans R Soc Trop Med Hyg. 1984;78(3):319–324.
  • Cross RW, Mire CE, Branco LM, et al. Treatment of Lassa virus infection in outbred Guinea pigs with first-in-class human monoclonal antibodies. Antiviral Res. 2016;133:218–222.
  • Mire CE, Cross RW, Geisbert JB, et al. Human- monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nat Med. 2017;23 (10):1146–1149.
  • World Health Organization. (2017 Accessed 23 November 2021, June). WHO Target Product Profile for Lassa virus Vaccine. Retrieved from https://www.who.int/blueprint/priority-diseases/key-action/LassaVirusVaccineTPP.PDF?ua=1
  • Purushotham J, Lambe T, Gilbert SC. Vaccine platforms for the prevention of Lassa fever. Immunol Lett. 2019;215:1–11.
  • Phase II Study to Evaluate Safety and Immunogenicity of a Chikungunya Vaccine - Full Text View - ClinicalTrials.gov. (2018, June 21). Retrieved 2021 Feb 16, from https://clinicaltrials.gov/ct2/show/NCT02861586
  • Study to Evaluate the Dosage and Safety of Two Intramuscular Injections of an Investigational Clade B HIV Vaccine - Full Text View - ClinicalTrials.gov. (2012). Retrieved 2021 Mar 30, from https://clinicaltrials.gov/ct2/show/NCT01320176
  • Mateo M, Reynard S, Carnec X, et al. Vaccines inducing immunity to Lassa virus glycoprotein and nucleoprotein protect macaques after a single shot. Sci Transl Med. 2019;11(512):eaaw3163.
  • Mateo M, Reynard S, Journeaux A, et al. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci Transl Med. 2021;13(597):eabf6348.
  • Vrba SM, Kirk NM, Brisse M, et al. Development and applications of viral vectored vaccines to combat zoonotic and emerging public health threats. Vaccines (Basel). 2020;8(4):680.
  • Chen J, Wang J, Zhang J, et al. Advances in development and application of influenza vaccines. Front Immunol. 2021;12:711997.
  • Fischer RJ, Purushotham JN, Doremalen NV, et al. ChAdOx1-vectored Lassa fever vaccine elicits a robust cellular and humoral immune response and protects Guinea pihs against lethal Lassa virus challenge. NPJ Vaccines. 2021;6(1):32.
  • Carrion R, Patterson JL, Johnson C, et al. A ML29 reassortant virus protects Guinea pigs against a distantly related Nigerian strain of Lassa virus and can provide sterilizing immunity. Vaccine. 2007;25 (20):4093–4102.
  • Carrion R, Patterson JL. An animal model that reflects human disease: the common marmoset (Callithrix jacchus). Curr Opin Virol. 2012;2(3):357–362.
  • Johnson DM, Cubitt B, Pfeffer TL, et al. Lassa virus vaccine candidate ML29 generates truncated viral RNAs which contribute to interfering activity and attenuation. Viruses. 2021;13(2):214.
  • Lukashevich I. Advanced Vaccine Candidates for Lassa Fever. Viruses. 2012;4(11):2514–2557.
  • Geisbert TW, Jones S, Fritz EA, et al. Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2005;2(6):e183.
  • Fathi A, Dahlke C, Addo MM. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum Vaccin Immunother. 2019;15(10):2269–2285.
  • Cross RW, Xu R, Matassov D, et al. Quadrivalent VesiculoVax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death. J Clin Invest. 2020;130(1):539–551.
  • Welch SR, Scholte FEM, Albariño CG, et al. The S genome segment is sufficient to maintain pathogenicity in intra-clade Lassa virus reassortants in a guinea pig model. Front Cell Infect Microbiol. 2018;8. DOI:10.3389/fcimb.2018.00240.
  • Brisse ME, Ly H. Hemorrhagic fever-causing arenaviruses: lethal pathogens and potent immune suppressors. Front Immunol. 2019;10. DOI:10.3389/fimmu.2019.00372.
  • Jahrling PB, Smith S, Hesse RA, et al. Pathogenesis of Lassa virus infection in Guinea pigs. Infect Immun. 1982;37(2):771–778.
  • Yun NE, Seregin AV, Walker DH, et al. Mice lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus. J Virol. 2013;87 (19):10908–10911.
  • Safety, Tolerability and Immunogenicity of INO-4500 in Healthy Volunteers - Full Text View - ClinicalTrials. gov. (2021). Retrieved 2021 Feb 18, from https://clinicaltrials.gov/ct2/show/NCT03805984
  • Safronetz D, Mire C, Rosenke K, et al. A recombinant vesicular stomatitis virus-based lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses. PLoS Negl Trop Dis. 2015;9(4):e0003736.
  • Cashman, K. A., Broderick, K. E., Wilkinson, E. R., Shaia, C. I., Bell, T. M., Shurtleff, A. C., Spik, K. W., Badger, C. V., Guttieri, M. C., Sardesai, N. Y., & Schmaljohn, C. S. (2013). Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation. Vaccines, 1(3), 262–277. https://doi.org/10.3390/vaccines1030262
  • Fisher-Hoch SP, McCormick JB, Auperin D, et al. Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene. Proc Nat Acad Sci. 1989;86(1):317–321.
  • Bredenbeek PJ, Molenkamp R, Spaan WJM, et al. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology. 2006;345 (2):299–304.
  • Jiang X, Dalebout TJ, Bredenbeek PJ, et al. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in Guinea pigs. Vaccine. 2011;29(6):1248–1257.
  • Wang M, Jokinen J, Tretyakova I, et al. Alphavirus vector-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins. Vaccine. 2018;36(5):683–690.
  • McCormick JB, Mitchell SW, Kiley MP, et al. Inactivated Lassa virus elicits a non protective immune response in rhesus monkeys. J Med Virol. 1992;37(1):1–7. https://doi.org/10.1002/jmv.1890370102