1,502
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Time-domain studies of M31

Pages 1-23 | Received 05 Oct 2016, Accepted 06 Dec 2016, Published online: 11 Jan 2017

References

  • Freedman WL, Madore BF, Gibson BK, et al. Final result from the Hubble space telescope key project to measure the Hubble constant. ApJ. 2001;553:47–72.
  • An JH, Evans NW, Hewett P, et al. The POINT-AGAPE survey – I. The variable stars in M31. MNRAS. 2004;351:1071–1098.
  • Vilardell F, Ribas I, Jordi C. Eclipsing binaries suitable for distance determination in the Andromeda galaxy. A &A. 2006;459:321–331.
  • Fliri J, Valls-Gabaud D. First results from the POMME survey of M31. Ap &SS. 2012;341:57–64.
  • Lee C-H, Riffeser A, Koppenhoefer J, et al. PAndromeda–First results from the high-cadence monitoring of M31 with pan-STARRS 1. AJ. 2012;143:Article id 89.
  • Lee C-H, Ngeow C-C, Yang T-C, et al. Using the palomar transient factory to search for ultra-long-period cepheid candidates in M31. IEEE IconSpace. 2013;1.
  • Miyazaki S, Komiyama Y, Nakaya H, et al. Hyper suprime-cam. SPIE. 2012;8446:Article id 84460Z.
  • Content D, Aaron K, Alplanalp A, et al. Wide-Field infrared survey telescope (WFIRST) 2.4-meter mission study. SPIE. 2013;8860:article id 88600E.
  • Gil de Paz A, Boissier S, Madore BF, et al. The GALEX ultraviolet atlas of nearby galaxies. ApJS. 2007;173:185–255.
  • Kaluzny J, Stanek KZ, Krockenberger M, et al. DIRECT Distances to nearby galaxies using detached eclipsing binaries and cepheids. I. Variables in the field M31B. AJ. 1998;115:1016–1044.
  • Stanek KZ, Kaluzny J, Krockenberger M, et al. DIRECT distances to nearby galaxies using detached eclipsing binaries and cepheids. II. Variables in the field M31A. AJ. 1998;115:1894–1915.
  • Stanek KZ, Kaluzny J, Krockenberger M, et al. DIRECT distances to nearby galaxies using detached eclipsing binaries and cepheids. III. Variables in the field M31C. AJ. 1999;117:2810–2830.
  • Kaluzny J, Mochejska BJ, Stanek KZ, et al. DIRECT Distances to nearby galaxies using detached eclipsing binaries and cepheids. IV. Variables in the field M31D. AJ. 1999;118:346–365.
  • Mochejska BJ, Kaluzny J, Stanek KZ, et al. DIRECT distances to nearby galaxies using detached eclipsing binaries and cepheids. V. Variables in the field M31F. AJ. 1999;118:2211–2228.
  • Macri LM, Stanek KZ, Sasselov DD, et al. DIRECT distances to nearby galaxies using detached eclipsing binaries and cepheids. VI. Variables in the Central Part of M33. AJ. 2001;121:870–890.
  • Mochejska BJ, Kaluzny J, Stanek KZ, et al. DIRECT distances to nearby galaxies using detached eclipsing binaries and cepheids. I. Variables in the field M33 A discovered with image subtraction. AJ. 2001;121:2032–2052.
  • Mochejska BJ, Kaluzny J, Stanek KZ, et al. DIRECT distances to nearby galaxies using detached eclipsing binaries and cepheids. VIII. Variables in the field M33B discovered with image subtraction. AJ. 2001;122:2477–2489.
  • Bonanos AZ, Stanek KZ, Sasselov DD, et al. DIRECT distances to nearby galaxies using detached eclipsing binaries and cepheids. IX. Variables in the field M31Y discovered with image subtraction. AJ. 2003;126:175–186.
  • Ribas I, Jordi C, Vilardell F, et al. A program to determine a direct and accurate distance to M31 from eclipsing binaries. New Astronomy Reviews. 2004;48:755–58.
  • Ribas I, Jordi C, Vilardell F, et al. First determination of the distance and fundamental properties of an eclipsing binary in the Andromeda galaxy. ApJL. 2005;635:37–40.
  • Vilardell F, Ribas I, Jordi C, et al. The distance to the andromeda galaxy from eclipsing binaries. A &A. 2010;509:Article id 70.
  • Vilardell F, Jordi C, Ribas I, et al. A comprehensive study of cepheid variables in the andromeda galaxy. Period distribution, blending, and distance determination. A &A. 2007;473:847–855.
  • Wright EL, Eisenhardt PRM, Mainzer AK, et al. The Wide-field Infrared survey explorer (wise): mission description and initial on-orbit performance. AJ. 2010;140:1868–1881.
  • Riffeser A, Fliri J, Gössl CA, et al. WeCAPP - Wendelstein Calar Alto pixellensing project I. Tracing dark and bright matter in M 31. A &A. 2001;379:362–373.
  • Fliri J, Riffeser A, Seitz S, et al. The Wendelstein Calar Alto pixellensing project (WeCAPP): the M31 variable star catalogue. A &A. 2006;445:423–439.
  • Riess AG, Fliri J, Valls-Gabaud D. Cepheid period-luminosity relations in the near-infrared and the distance to M31 from the Hubble space telescope wide field camera 3. ApJ. 2012;745:Article id 156.
  • Kodric M, Riffeser A, Hopp U, et al. Properties of M31. II. A cepheid disk sample derived from the first year of PS1 PAndromeda data. AJ. 2013;145:article id 106.
  • Lee C-H, Koppenhoefer J, Seitz S, et al. Properties of M31. V. 298 Eclipsing binaries from PAndromeda. ApJ. 2014;797:article id 22.
  • Rau A, Kulkarni SR, Law NM, et al. Exploring the optical transient sky with the palomar transient factory. PASP. 2009;121:1334–1351.
  • Ngeow C-C, Lee C-H, Yang T-C, et al. VI-band follow-up observations of ultra-long-period cepheid candidates in M31. AJ. 2015;149:Article id 66.
  • Leavitt HS, Pickering EC. Periods of 25 variable stars in the small magellanic cloud. HarCi. 1912;173:1–3.
  • Hubble E. A spiral nebula as a stellar system, Messier 31. ApJ. 1929;69:103–158.
  • Humphreys EML, Reid MJ, Moran JM, et al. Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. ApJ. 2013;775:Article id 13.
  • Efstathiou G. H0 revisited. MNRAS. 2014;440:1138–1152.
  • Kodric M, Riffeser A, Seitz S, et al. The M31 Near-infrared period-luminosity relation and its non-linearity for delta cep variables with 0.5 < = log(P) < = 1.7. ApJ. 2015;799:Article id 144.
  • Bono G, Marconi M, Cassisi S, et al. Classical cepheid pulsation models. x. The period-age relation. ApJ. 2005;621:966–977.
  • Davidge TJ, McConnachie AW, Fardal MA, et al. The recent stellar archeology of M31 – The nearest red disk galaxy. ApJ. 2012;751:Article id 74.
  • Gordon KD, Bailin J, Engelbracht CW, et al. Spitzer MIPS infrared imaging of M31: further evidence for a spiral-ring composite structure. ApJL. 2006;638:87–92.
  • Bird JC, Stanek KZ, Prieto JL. Using ultra long period cepheids to extend the cosmic distance ladder to 100 Mpc and beyond. ApJ. 2009;695:874–882.
  • Fiorentino G, Clementini G, Marconi M, et al. Ultra long period Cepheids: a primary standard candle out to the Hubble flow. Ap &SS. 2012;341:143–150.
  • Oosterhoff PT. U Trianguli Australis, a classical Cepheid with secondary period. BAN. 1957a;13:317.
  • Oosterhoff PT. The light-variation and the radial-velocity curves of TU Cas explained in terms of a primary period and a beat period. BAN. 1957B;13:320.
  • Pike CD, Andrews PJ. Three-colour photometry of four suspected double-mode cepheids. MNRAS. 1979;187:261–267.
  • Henden AA. A search for northern hemisphere double mode Cepheids. I – existing observations. MNRAS. 1979;189:149–157.
  • Henden AA. A search for northern hemisphere double mode cepheids. II – New UBV cepheid photometry. MNRAS. 1980;192:621–623.
  • Alcock C, Allsman RA, Axelrod TS, et al. The MACHO project LMC variable star inventory. 1: beat Cepheids-conclusive evidence for the excitation of the second overtone in classical Cepheids. AJ. 1995;109:1654–1662.
  • Udalski A, Soszynski I, Szymanski M, et al. The optical gravitational lensing experiment. Cepheids in the magellanic Clouds. I. Double-mode Cepheids in the small magellanic cloud.AcA. 1999;49:1–44.
  • Soszynski I, Udalski A, Szymanski M, et al. The optical gravitational lensing experiment. Cepheids in the magellanic clouds. VI. Double-mode cepheids in the large magellanic cloud. AcA. 2000;50:451–490.
  • Marquette JB, Beaulieu JP, Buchler JR, et al. The beat Cepheids in the magellanic clouds: an analysis from the EROS-2 database. A &A. 2009;495:249–256.
  • Soszynski I, Poleski R, Udalski A, et al. The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. I. Classical Cepheids in the large magellanic cloud. AcA. 2008;58:163–185.
  • Soszynski I, Poleski R, Udalski A, et al. The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. VII. Classical Cepheids in the small magellanic cloud. AcA. 2010;60:17–39.
  • Beaulieu J-P, Buchler JR, Marquette J-B, et al. Detection of beat Cepheids in M33 and their use as a probe of the M33 metallicity distribution. ApJL. 2006;653:101–104.
  • Hartman JD, Bersier D, Standk KZ, et al. Deep Canada-France-Hawaii telescope photometric survey of the entire M33 galaxy – I. Catalogue of 36000 variable point sources. MNRAS. 2006;371:1405–1417.
  • Garnett DR, Shields GA, Skillman ED, et al. Interstellar abundance gradients in NGC 2403: comparison to M33. ApJ. 1997;589:63–86.
  • Lee C-H, Kodric M, Seitz S, et al. Properties of M31. III. Candidate beat Cepheids from PS1 PAndromeda data and their implication on metallicity gradient. ApJ. 2013;777:Article id 35.
  • Kwitter KB, Lehman EMM, Balick B, et al. Abundances of planetary nebulae in the outer disk of M31. ApJ. 2012;753:Article id 12.
  • Paczynski B. Detached eclipsing binaries as primary distance and age indicators. In: Livio M, editor. Conference paper, space telescope science institute series, the extragalactic distance scale. Cambridge: Cambridge University Press: 1997. p. 273–280.
  • Bonanos AZ, Castro N, Macri LM, et al. The distance to the massive eclipsing binary LMC-SC1-105 in the large magellanic cloud. ApJL. 2011;729:Article id 9.
  • Riess AG, Macri LM, Hoffmann SL, et al. A 2.4% determination of the local value of the Hubble constant. ApJ. 2016;826:Article id 56.
  • Massey P. Massive stars in the galaxies of the local group. NewAR. 2013;57:14–27.
  • Humphreys RM, Davidson K. The luminous blue variables: astrophysical geysers. PASP. 1994;106:1025–1051.
  • Meynet G, Eggenberger P, Maeder A. Massive star models with magnetic braking. A &A Letter. 2011;525:Article id 11.
  • Smith N. Discovery of a nearby twin of SN 1987A’s Nebula around the luminous blue variable HD 168625: Was SK -69 202 an LBV? AJ. 2007;133:1034–1040.
  • Gal-Yam A, Leonard DC. A massive hypergiant star as the progenitor of the supernova SN 2005gl. Nature. 2009;458:865–867.
  • Mauerhan JC, Smith N, Filippenko AV, et al. The unprecedented 2012 outburst of SN 2009ip: a luminous blue variable star becomes a true supernova. MNRAS. 2013;430:1801–1810.
  • Clark JS, Larionov VM, Arkharov A. On the population of galactic luminous blue variables. A &A. 2005;435:239–246.
  • Gvaramadze VV, Kniazev AY, Fabrika S. Revealing evolved massive stars with Spitzer. MNRAS. 2010;405:1047–1060.
  • Massey P, McNeill RT, Olsen KAG, et al. A survey of local group galaxies currently forming stars. III. A search for luminous blue variables and other H-alpha emission-line stars. AJ. 2007;134:2474–2503.
  • Lee C-H, Seitz S, Kodric M, et al. Properties of M31. IV. Candidate luminous blue variables from PAndromeda. ApJ. 2014;785:Article id 11.
  • Tisserand P, Wood PR, Marquette JB, et al. New Magellanic cloud R Coronae Borealis and DY Persei type stars from the EROS-2 database: the connection between RCBs, DYPers, and ordinary carbon stars. A &A. 2009;501:985–998.
  • Tisserand P, Wyrzykowski L, Wood PR, et al. New R Coronae Borealis stars discovered in OGLE-III galactic bulge fields from their mid- and near-infrared properties. A &A. 2011;529:Article id 118.
  • Webbink RF. Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae. ApJ. 1984;277:355–360.
  • Iben IJ, Tutukov AV, Yungelson LR. On the origin of hydrogen-deficient supergiants and their relation to R Coronae Borealis stars and non-DA white dwarfs. ApJ. 1996;456:750.
  • Clayton GC, Geballe TR, Herwig F, et al. Very large excesses of 18) in hydrogen-deficient carbon and R Coronae Borealis stars: evidence for white dwarf mergers. ApJ. 2007;662:1220–1230.
  • Pandey G, Lambert DL, Kameswara RN. Fluorine in R Coronae Borealis stars. ApJ. 2008;674:1068–1077.
  • Clayton GC, Sugerman BEK, Stanford SA, et al. The circumstellar environment of R Coronae Borealis: white dwarf merger or final-helium-shell flash. ApJ. 2011;743:Article id 44.
  • Tang S, Cao Y, Bildsten L, et al. R Coronae Borealis stars in M31 from the palomar transient factory. ApJL. 2013;767:Article id 23.
  • Zwicky F. Die rotverschiebung von extragalaktischen nebeln. AcHPh. 1933;6:110–127.
  • Paczynski B. Gravitational microlensing by the galactic halo. ApJ. 1986;304:1–5.
  • Alcock C, Akerlof CW, Allsman RA, et al. Possible gravitational microlensing of a star in the large magellanic cloud. Nature. 1993;365:621–623.
  • Aubourg E, Bareyre P, Brehin S, et al. Evidence for gravitational microlensing by dark objects in the galactic halo. Nature. 1993;365:623–625.
  • Udalski A, Szymanski M, Kaluzny J, et al. The optical gravitational lensing experiment. Discovery of the first candidate microlensing event in the direction of the galactic bulge. AcA. 1993;43:289–294.
  • An JH, Evans NW, Kerins E, et al. The anomaly in the candidate microlensing event PA-99-N2. ApJ. 2004;601:845–857.
  • Crotts APS. M31 - A unique laboratory for gravitational microlensing. ApJL. 1992;399:43–46.
  • Lee C-H, Riffeser A, Seitz S, et al. Microlensing events from the 11-year Observations of the Wendelstein Calar Alto pixellensing project. ApJ. 2015;806:Article id 161.
  • Riffeser A, Seitz S, Bender R. The M31 microlensing event WeCAPP-GL1/POINT-AGAPE-S3: evidence for a MACHO component in the dark halo of M31?. ApJ. 2008;684:1093.
  • Calchi Novati S, Dall’Ora M, Gould A, et al. M31 pixel lensing event OAB-N2: a study of the lens proper motion. ApJ. 2010;717:987–994.
  • Ingrosso G, Calchi Novati S, de Paolis F, et al. Pixel lensing as a way to detect extrasolar planets in M31. MNRAS. 2009;399:219–228.
  • della Valle M, Livio M. The calibration of novae as distance indicators. ApJ. 1995;452:704.
  • Zwicky F. Life-luminosity relation for novae. PASP. 1936;48:191.
  • Mclaughlin DB. The relation between light-curves and luminosities of novae. PASP. 1945;57:69.
  • Arp HC. Novae in the Andromeda nebula. AJ. 1956;61:15–34.
  • Shara MM. A theoretical explanation of the absolute magnitude-decline time relationship for classical novae. ApJ. 1981;243:926–934.
  • Livio M. Classical novae and the extragalactic distance scale. ApJ. 1992;393:516–522.
  • Schaefer BE. Comprehensive photometric histories of all known galactic recurrent novae. ApJS. 2010;187:275–373.
  • Darnley MJ, Bode MF, Kerins E, et al. Classical novae from the POINT-AGAPE microlensing survey of M31 – I. The nova catalogue. MNRAS. 2004;353:571–588.
  • Lee C-H, Riffeser A, Seitz S, et al. The Wendelstein Calar Alto pixellensing project (WeCAPP): the M31 nova catalogue. A &A. 2012;537:Article id 43.
  • Shafter AW, Bode MF, Darnley MJ, et al. A spitzer survey of novae in M31. ApJ. 2011;727:Article id 50.
  • Pietsch W, Haberl F, Sala G, et al. X-ray monitoring of optical novae in M31 from July 2004 to February 2005. A &A. 2007;465:375.
  • Strope RJ, Schaefer BE, Henden AA. Catalog of 93 nova light curves: classification and properties. AJ. 2010;140:34–62.
  • Soraisam MD, Gilfanov M. Constraining the role of novae as progenitors of type Ia supernovae. A &A. 2015;583:Article id 140.
  • Pejcha O. Time-dependent rebrightenings in classical nova outbursts: a late-time episodic fuel burning? ApJL. 2009;701:119–122.
  • Dalcanton JJ, Williams BF, Lang D, et al. The panchromatic Hubble andromeda treasury. ApJS. 2012;200:Article id 18.
  • Williams SC, Darnley MJ, Bode JF, et al. On the progenitors of local group novae. I. The M31 catalog. ApJS. 2014;213:Article id 10.
  • Ita Y, Tanabe T, Matsunaga N, et al. Variable stars in the magellanic clouds – II. The data and infrared properties. MNRAS. 2004;353:705–712.
  • Sesar B, Ivezic Z, Grammer SH. Light curve templates and galactic distribution of RR lyrae stars from sloan digital sky survey stripe 82. ApJ. 2010;708:717–741.
  • Cacciari C, Clementini G. Globular cluster distances from RR lyrae stars. LNP. 2003;635:105–122.
  • Kunder A, Chaboyer B, Layden A. The determination of reddening from intrinsic VR colors of RR lyrae stars. AJ. 2010;139:415–424.
  • Sarajedini A, Mancone CL, Lauer TR, et al. RR lyrae variables in two fields in the spheroid of M31. AJ. 2009;138:184–195.
  • Jeffery EJ, Smith E, Brown TM, et al. HST/ACS observations of RR Lyrae stars in six ultra-deep fields of M31. AJ. 2011;141:Article id 171.
  • Pritchet CJ, van den Bergh S. Observations of RR Lyrae stars in the halo of M31. ApJ. 1987;316:517–529.
  • Dolphin AE, Saha A, Olszewski EW, et al. Short-period variable stars in the M31 Halo. AJ. 2004;127:875–896.
  • Sick J, Courteau S, Cuillandre J-C. The andromeda optical and infrared disk survey. ASPC. 2014;480:39.
  • Whitmore BC, Allam SS, Budavari T, et al. Version 1 of the Hubble source catalog. AJ. 2016;151:Article id 134.
  • Riess AG, Casertano S, Anderson J, et al. Parallax beyond a Kiloparsec from spatially scanning the wide field camera 3 on the Hubble space telescope. ApJ. 2014;785:Article id 161.
  • Casertano S, Riess AG, Bucciarelli B, et al. A test of Gaia data release 1 parallaxes: implications for the local distance scale. Journal. 2016;eprint arXiv:1609.05175.