2,125
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Formation of exomoons: a solar system perspective

Pages 24-52 | Received 15 Sep 2016, Accepted 03 Jan 2017, Published online: 23 Jan 2017

References

  • Agnor CB, Canup RM, Levison HF. On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus. 1999;142:219–237.
  • Chambers JE. Planetary accretion in the inner Solar System. Earth Planet Sci Lett. 2004;223:241–252.
  • Barr AC, Canup RM. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus. 2008;198:163–177.
  • Barr AC, Citron RI, Canup RM. Origin of a partially differentiated Titan. Icarus. 2010;209:858–862.
  • Sasaki T, Stewart GR, Ida S. Origin of the different architectures of the jovian and saturnian satellite systems. Astrophys J. 2010;714(2):1052.
  • Reynolds RT, McKay CP, Kasting JF. Europa, tidally heated oceans, and habitable zones around giant planets. Adv Space Res. 1987;7:125–132.
  • Williams DM, Kasting JF, Wade RA. Habitable moons around extrasolar giant planets. Nature. 1997;385:234–236.
  • Kaltenegger L. Characterizing Habitable Exomoons. Astrophys J. 2010;712:L125–L130.
  • Heller R. Exomoon habitability constrained by energy flux and orbital stability. Astron Astrophys. 2012;545:L8.
  • Heller R, Barnes R. Exomoon Habitability Constrained by Illumination and Tidal Heating. Astrobiology. 2013;13:18–46.
  • Tarter JC, Backus PR, Mancinelli RL, et al. A reappraisal of the habitability of planets around m dwarf stars. Astrobiology. 2007;7:30–65.
  • Burns JA. The dynamical evolution and origin of the martian moons. Vistas in Astron. 1978;22:193–210.
  • Hartmann WK, Davis DR. Satellite-sized planetesimals and lunar origin. Icarus. 1975;24:504–515.
  • Cameron AGW, Ward WR. The origin of the moon. In: Merrill RB, editor. Lunar and planetary science conference proceedings. Vol. 7, April, Houston. p. 120–122. 1976.
  • Canup RM, Asphaug E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature. 2001;412:708–712.
  • Canup RM. Simulations of a late lunar forming impact. Icarus. 2004;168:433–456.
  • Canup RM. A giant impact origin of Pluto-Charon. Science. 2005;307:546–550.
  • Canup RM. On a giant impact origin of Charon, Nix, and Hydra. Astron J. 2011;141(2):35.
  • {\’C}uk M, Stewart ST. Making the moon from a Fast-Spinning earth: A giant impact followed by resonant despinning. Science. 2012;338:1047–1052.
  • Canup RM. Forming a Moon with an Earth-like Composition via a Giant Impact. Science. 2012;338:1052–1055.
  • Chambers JE. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus. 2013;224:43–56.
  • Ogihara M, Ida S. {\it N}-Body Simulations of Planetary Accretion Around M Dwarf Stars. Astrophys J. 2009;699:824–838.
  • Morishima R, Stadel J, Moore B. From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets. Icarus. 2010;207(2):517–535.
  • Elser S, Moore B, Stadel J, et al. How common are Earth-Moon planetary systems? Icarus. 2011;214:357–365.
  • Pollack JB, Consolmagno G. Origin and evolution of the Saturn system. Origin and evolution of the Saturn system. In: Saturn TG, Matthews MS, editor. Saturn. Tucson, AZ: University of Arizona Press; 1984. p. 811–866.
  • Coradini A, Cerroni P, Magni G, et al. Formation of the satellites of the outer solar system: sources of their atmospheres. In: Atreya SK, Pollack JB, Matthews MS, editors. Origin and evolution of planetary and satellite atmospheres. Tucson, AZ: University of Arizona Press; 1989. p. 723–762.
  • Canup RM, Ward WR. Formation of the Galilean satellites: Conditions of accretion. Astron J. 2002;124:3404–3423.
  • Mosqueira I, Estrada PR. Formation of regular satellites of giant planets in an extended gaseous nebula I: Subnebula model and accretion of satellites. Icarus. 2003;163:198–231.
  • Ward WR, Canup RM. Circumplanetary disk formation. Astron J. 2010;140:1168.
  • Canup RM, Ward WR. A common mass scaling for satellite systems of gaseous planets. Nature. 2006;441:834–839.
  • Heller R, Pudritz R. Water ice lines and the formation of giant moons around super-jovian planets. Astrophys J. 2015;806:181.
  • Heller R, Pudritz R. Conditions for water ice lines and mars-mass exomoons around accreting super-jovian planets at 1- 20 AU from sun-like stars. Astron Astrophys. 2015;578:A19.
  • Kipping DM, Bakos GÁ, Buchhave L, et al. The hunt for exomoons with Kepler (HEK). I. Description of a new observational project. Astrophys J. 2012;750:115.
  • Heller R. Detecting extrasolar moons Akin to solar system satellites with an orbital sampling effect. Astrophys J. 2014;787:14.
  • Hippke M. On the detection of exomoons: A search in Kepler data for the orbital sampling effect and the Scatter Peak. Astrophys J. 2015;806:51.
  • Lewis KM, Sackett PD, Mardling RA. Possibility of detecting moons of pulsar planets through time-of-arrival analysis. ApJL. 2008;685:L153–L156.
  • Noyola JP, Satyal S, Musielak ZE. Detection of exomoons through observations of radio emissions. Astrophys J. 2014;791:25.
  • Liebig C, Wambsganss J. Detectability of extrasolar moons as gravitational microlenses. Aa. 2010;520:A68.
  • Sengupta S, Marley MS. Detecting exomoons around self-luminous giant planets through polarization. Astrophys J. 2016;824:76.
  • Kenworthy MA, Mamajek EE. Modeling giant extrasolar ring systems in eclipse and the case of J1407b: Sculpting by exomoons? Astrophys J. 2015;800:126.
  • Kipping DM. Transit timing effects due to an exomoon - II. Mon Not R Astron Soc. 2009;396:1797–1804.
  • Sartoretti P, Schneider J. On the detection of satellites of extrasolar planets with the method of transits. Astron Astrophys Suppl Ser. 1999;134:553–560.
  • Szabó GM, Szatmáry K, Divéki Z, et al. Possibility of a photometric detection of “exomoons”. Astron Astrophys. 2006;450:395–398.
  • Kipping DM. Transit timing effects due to an exomoon. Mon Not R Astron Soc. 2009;392:181–189.
  • Domingos RC, Winter OC, Tokoyama T. Stable satellites around extrasolar giant planets. Mon Not R Astron Soc. 2006;373:1227–1234.
  • Namouni F. The fate of moons of close-in giant exoplanets. Astrophys J. 2010;719:L145–L147.
  • Barnes JW, O’Brien DP. Stability of satellites around close-in extrasolar giant planets. Astrophys J. 2002;575:1087–1093.
  • Nesvorn{\‘y} D, Vokrouhlick{\‘y} D, Morbidelli A. Capture of irregular satellites during planetary encounters. Astron J. 2007;133:1962.
  • Stevenson DJ, Harris AW, Lunine JL. Origins of satellites. In: Burns JA, Matthews MS, editors. Satellites. Tucson, AZ: University of Arizona Press; 1986. p. 39–88.
  • Bodman EH, Quillen A. Kic 8462852: Transit of a large comet family. Astrophys J Lett. 2016;819:L34.
  • Dobrovolskis AR, Peale SW, Harris AW. Dynamics of the pluto-charon binary. In: Burns JA, Matthews MS, editors. Pluto and charon. Tucson, AZ: University of Arizona Press; 1997. p. 159–190.
  • McKinnon WB. On the origin of Triton and Pluto. Nature. 1984;311:355–358.
  • Goldreich P, Murray N, Longaretti PY, et al. Neptune’s story. Science. 1989;245:500–504.
  • Agnor CB, Hamilton DP. Neptune’s capture of its moon triton in a binary–planet gravitational encounter. Nature. 2006;441:192–194.
  • Wolszczan A, Frail DA. A planetary system around the millisecond pulsar psr 1257+ 12. Nature. 1992;355:145–147.
  • Morbidelli A, Lunine JI, O’Brien DP, et al. Building terrestrial planets. Ann Rev Earth Planet Sci. 2012;40:251–275.
  • Asphaug E, Reufer A. Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nat Geosci. 2014;7:564–568.
  • Alemi A, Stevenson D. Why venus has no moon. In: AAS/Division for Planetary Sciences Meeting Abstracts \#38. Pasadena (CA): Bulletin of the American Astronomical Society; Vol. 38, 2006. p. 491.
  • Marinova MM, Aharonson O, Asphaug E. Mega-impact formation of the mars hemispheric dichotomy. Nature. 2008;453:1216–1219.
  • Burns JA. Contradictory clues as to the origin of the Martian moons. In: Kieffer HH, Jakosky BM, editors. Mars. Tucson, AZ: University of Arizona Press; 1992. p. 1283–1301.
  • Peale SJ. The origin of the natural satellites. In: Spohn T, editor. Treatise on geophysics. Vol. 10, Amsterdam: Elsevier; 2007. p. 456–508.
  • Craddock RA. Are phobos and deimos the result of a giant impact. Icarus. 2011;211:1150–1161.
  • Citron RI, Genda H, Ida S. Formation of Phobos and Deimos via a giant impact. Icarus. 2015;252:334–338.
  • Kenyon SJ, Bromley BC. The formation of Pluto’s low mass satellites. Astrophys J. 2014;147:8.
  • Benz W, Cameron AGW, Melosh HJ. The origin of the moon and the single-impact hypothesis III. Icarus. 1989;81:113–131.
  • Reufer A, Meier MMM, Benz W, et al. On the origin and composition of Theia: Constraints from new models of the giant impact. Icarus. 2012;221:296–299.
  • Meier MMM, Reufer A, Wieler R. On the origin and composition of Theia: Constraints from new models of the Giant Impact. Icarus. 2014;242:316–328.
  • Hyodo R, Ohtsuki K, Takeda T. Formation of multiple-satellite systems from low-mass circumplanetary particle disks. Astrophys J. 2015;799:40.
  • Barr AC. On the origin of earth’s moon. J Geophys Res Planets. 2016;121:1573–1601.
  • Monaghan JJ. Smoothed particle hydrodynamics. Ann Rev Astron Astrophys. 1992;30:543–574.
  • Benz W, Slattery WL, Cameron AGW. The origin of the moon and the single-impact hypothesis I. Icarus. 1986;66:515–535.
  • Wada K, Norman CA. Numerical models of the multiphase interstellar matter with stellar energy feedback on a galactic scale. Astrophys J. 2001;547:172–186.
  • Wada K, Kokubo E, Makino J. High-resolution simulations of a moon-forming impact and postimpact evolution. Astrophys J. 2006;638:1180.
  • McGlaun JM, Thompson SL, Elrick MG. CTH: A 3-Dimensional Shock-Wave Physics Code. Int J Imp Eng. 1990;10:351–360.
  • Crawford DA, Taylor PA, Bell RL, et al. Adaptive mesh refinement in the CTH shock physics hydrocode. Russ J Phys Chem B. 2006;25.
  • Canup RM, Barr AC, Crawford DA. Lunar-forming impacts: High-resolution SPH and AMR-CTH simulations. Icarus. 2013;222:200–219.
  • Ida S, Canup RM, Stewart GR. Lunar accretion from an impact generated disk. Nature. 1997;389.
  • Kokubo E, Ida S, Makino J. Evolution of a Circumterrestrial Disk and Formation of a Single Moon. Icarus. 2000;148:419–436.
  • Thompson C, Stevenson DJ. Gravitational instability in two-phase disks and the origin of the Moon. Astrophys J. 1988;333:452–481.
  • Ward WR. On the Vertical Structure of the Protolunar Disk. Astrophys J. 2012;744:140.
  • Salmon J, Canup RM. Lunar accretion from a Roche-interior fluid disk. Astrophys J. 2012;760:83.
  • Salmon J, Canup RM. Accretion of the Moon from non-canonical discs. Phil Trans R Soc A. 2014;372:20130256.
  • Canup RM. Lunar-forming collisions with pre-impact rotation. Icarus. 2008;196:518–538.
  • Leinhardt ZM, Stewart ST. Collisions between Gravity-dominated Bodies. I. Outcome Regimes and Scaling Laws. Astrophys J. 2012;745:79.
  • Gault DE, Heitowit ED. The partition of energy for hypervelocity impact craters formed in rock (NASA technical report no. NASA-TM-X-57428). In: Proceedings of the sixth hypervelocity impact symposium. Cleveland, OH. 1963. p. 419–456.
  • Marcus RA, Stewart ST, Sasselov D, et al. Collisional Stripping and Disruption of Super-Earths. Astrophys J Lett. 2009;700:L118.
  • Marcus RA, Sasselov D, Stewart ST, et al. Water/Icy Super-Earths: Giant Impacts and Maximum Water Content. Astrophys J Lett. 2010;719:L45–L49.
  • Genda H, Kokubo E, Ida S. Merging Criteria for Giant Impacts of Protoplanets. Astrophys J. 2012;744:137–145.
  • Takeda T, Ida S. Angular momentum transfer in a protolunar disk. Astrophys J. 2001;560:514–533.
  • Crida A, Charnoz S. Formation of regular satellites from ancient massive rings in the solar system. Science. 2012;338:1196–1199.
  • Ward WR, Cameron AGW. Disc evolution within the roche limit. In: Lunar and planetary institute conference abstracts. March. Houston; 1978. p. 1205.
  • Weaver HA, Stern SA, Mutchler MJ, et al. Discovery of two new satellites of Pluto. Nature. 2006;439:943–945.
  • Showalter MR, Hamilton DP, Stern SA, et al. New Satellite of (134340) Pluto: S/2011 (134340) 1. IAU Circ. 2011;9221.
  • Leinhardt ZM, Marcus RA, Stewart ST. The formation of the collisional family around the dwarf planet Haumea. Astrophys J. 2010;714:1789.
  • Barr AC, Schwamb ME. Interpreting the Densities of The Kuiper Belt Objects. Mon Not R Astron Soc. 2016;460:1542–1548. doi:10.1093/mnras/stw1052
  • Squyres SW, Reynolds RT, Summers AL, et al. Accretional heating of the satellites of Saturn and Uranus. J Geophys Res. 1988;93:8779–8794.
  • Ward WR, Canup RM. Circumplanetary disk formation. Astrophys J. 2010;140:1168–1193.
  • Papaloizou JC, Nelson RP. Models of accreting gas giant protoplanets in protostellar disks. Astron Astrophys. 2005;433:247–265.
  • Hubickyj O, Bodenheimer P, Lissauer JJ. Accretion of the gaseous envelope of jupiter around a 5–10 earth-mass core. Icarus. 2005;179:415–431.
  • Mollière P, Mordasini C. Deuterium burning in objects forming via the core accretion scenario. Astron Astrophys. 2012;547:A105.
  • Mordasini C. Luminosity of young Jupiters revisited: Massive cores make hot planets. Astron Astrophys. 2013;558:A113.
  • Haisch KE Jr, Lada EA, Lada CJ. Disk Frequencies and Lifetimes in Young Clusters. Astrophys J Lett. 2001;553:L153–L156.
  • Thi WF, Blake GA, van Dishoeck EF, et al. Substantial reservoirs of molecular hydrogen in the debris disks around young stars. Nature. 2001;409:60–63.
  • Lubow SH, Seibert M, Artymowicz P. Disk accretion onto high-mass planets. Astrophys J. 1999;526:1001–1012.
  • D’Angelo G, Henning T, Kley W. Thermohydrodynamics of Circumstellar Disks with High-Mass Planets. Astrophys J. 2003;599:548–576.
  • Ayliffe BA, Bate MR. Circumplanetary disc properties obtained from radiation hydrodynamical simulations of gas accretion by protoplanets. Mon Not R Astron Soc. 2009;397:657–665.
  • Tanigawa T, Ohtsuki K, Machida MN. Distribution of accreting gas and angular momentum onto circumplanetary disks. Astrophys J. 2012;747:47.
  • Tanigawa T, Maruta A, Machida MN. Accretion of solid materials onto circumplanetary disks from protoplanetary disks. Astrophys J. 2014;784:109.
  • Papaloizou J, Larwood J. On the orbital evolution and growth of protoplanets embedded in a gaseous disc. Mon Not R Astron Soc. 2000;315:823–833.
  • Tanaka H, Ward WR. Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. Astrophys J. 2004;602:388.
  • Cresswell P, Nelson RP. Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. Astron Astrophys. 2008;482:677–690.
  • Pritchard ME, Stevenson DJ. Thermal aspects of a lunar origin by giant impact. In: Canup RM, Righter K, editors. Origin of the earth and moon. Tucson, AZ: University of Arizona Press; 2000. p. 179–196.
  • {\’C}uk M, Dones L, Nesvorn\‘y D. Origin of the earth and moon. Astrophys J. 2016;820:97.
  • Dones L. A recent cometary origin for Saturn’s rings? Icarus. 1991;92:194–203.
  • Robbins SJ, Stewart GR, Lewis MC, et al. Estimating the masses of saturnʹs a and b rings from high-optical depth n-body simulations and stellar occultations. Icarus. 2010;206:431–445.
  • Cuzzi J, Burns J, Charnoz S, et al. An evolving view of saturnʹs dynamic rings. Science. 2010;327:1470–1475.
  • Charnoz S, Morbidelli A, Dones L, et al. Did Saturn’s rings form during the Late Heavy Bombardment. Icarus. 2009;199:413–428.
  • Canup RM. Origin of saturn’s rings and inner moons by mass removal from a lost titan-sized satellite. Nature. 2010;468:943–946.
  • Charnoz S, Crida A, Castillo-Rogetz JC, et al. Accretion of saturn’s mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons. Icaurs. 2011;216:535–550.
  • Rieder S, Kenworthy MA. Constraints on the size and dynamics of the j1407b ring system. Astron Astrophys. 2016;596:A9.
  • Wood JA. Moon over mauna loa – a review of hypotheses of formation of earth’s moon. In: Origin of the moon. Proceedings of the Conference; 1984 October 13–16; Kona, HI, Tucson, AZ: University of Arizona Press; 1986.
  • Darwin GH. On the precession of a viscous spheroid and on the remote history of the earth. Philos Trans R Soc Part II. 1879;170:447–530.
  • Jeffreys H. Moon, Origin of the, The resonance theory of the (Second paper). Mon Not R Astron Soc. 1930;91:169.
  • Ringwood AE. Some aspects of the thermal evolution of the Earth. Geochim Cosmochim Acta. 1960;20:241–259.
  • Wise DU. An origin of the moon by rotational fission during formation of the earth’s core. J Geophys Res. 1963;68:1547–1554.
  • Darwin GH. On the secular changes in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos Trans R Soc London. 1880;171:713–891.
  • Stevenson DJ. Origin of the Moon – The Collision Hypothesis. Ann Rev Earth Planet Sci. 1987;15:271–315.
  • Durisen RH, Scott EH. Implications of recent numerical calculations for the fission theory of the origin of the Moon. Icarus. 1984;58:153–158.
  • Kaula WM, Harris AW. Dynamics of lunar origin and orbital evolution. Rev Geophys. 1975;13:363–371.
  • Nakazawa K, Komuro T, Hayashi C. Origin of the moonÑcapture by gas drag of the earth’s primordial atmosphere. Moon Planets. 1983;28:311–327.
  • Pollack JB, Burns JA, Tauber ME. Gas Drag in Primordial Circumplanetary Envelopes: {A} Mechanism for Satellite Capture. Icarus. 1979;37:587–611.
  • Öpik EJ. Comments on Lunar Origin. Irish Astron J. 1972;10:190.
  • Wood JA, Mitler HE. Origin of the moon by a modified capture mechanism or half a loaf is better than a whole one. In: Lunar and planetary institute conference abstracts. March. Houston; 1974. p. 851–853.
  • Mizuno H, Boss A. Tidal disruption of dissipative planetesimals. Icarus. 1985;63:109–133.
  • Tsui KH. Satellite capture by scattering of an existing massive planetary satellite. Planet Space Sci. 1999;47:917–920.
  • Murray CD, Dermott SF. Solar system dynamics. New York, NY: Cambridge University Press; 1999.
  • Meyer J, Elkins-Tanton L, Wisdom J. Coupled thermal-orbital evolution of the early Moon. Icarus. 2010;208:1–10.
  • Bennett DP, Batista V, Bond IA, et al. MOA-2011-BLG-262Lb: A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge. Astrophys J. 2014;785:155.
  • Heller R, Williams D, Kipping D, et al. Formation, habitability, and detection of extrasolar moons. Astrobiology. 2014;14:798–835.
  • Weidner C, Horne K. Limits on the orbits and masses of moons around currently-known transiting exoplanets. Astron Astrophys. 2010;521:A76.
  • Kipping DM, Huang X, Nesvorn{\‘y} D, et al. The possible moon of kepler-90g is a false positive. Astrophys J Lett. 2015;799:L14.
  • Kipping DM. In search of exomoons. In: Frank N, editor. Bash symposium 2013: new horizons in astronomy. 2013 October 6–8; Austin, TX; 2014. Available from: http://arxiv.org/abs/1405.1455,2014
  • Agol E, Jansen T, Lacy B, et al. The Center of Light: Spectroastrometric Detection of Exomoons. Astrophys J. 2015;812:5.
  • Boss AP. Giant Planet Formation by Gravitational Instability. Science. 1997;276:1836–1839.
  • Williams DM. Capture of Terrestrial-Sized Moons by Gas Giant Planets. Astrobiology. 2013;13:315–323.
  • Porter SB, Grundy WM. Post-Capture Evolution of Potentially Habitable Exomoons. Astrophys J. 2011;736:L14.
  • MacDonald GJF. Origin of the moon: dynamical considerations. In: Marsden B, Cameron AGW, editiors. The earth-moon system: proceedings of an international conference. 1964 January 20–21; New York, NY: Plenum Press; 1966. p. 165–210.
  • Brozović M, Showalter MR, Jacobson RA, et al. The orbits and masses of satellites of pluto. Icarus. 2015;246:317–329.