210
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Fabrication and mechanical properties of hybrid fibre-reinforced polymer hybrid composite with graphene nanoplatelets and multiwalled carbon nanotubes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &
Article: 2343586 | Received 08 Feb 2024, Accepted 01 Mar 2024, Published online: 29 Apr 2024

References

  • Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28(1-2), 1–63. https://doi.org/10.1016/S0927-796X(00)00012-7
  • Araby, S., Saber, N., Ma, X., Kawashima, N., Kang, H., Shen, H., Zhang, L., Xu, J., Majewski, P., & Ma, J. (2015). Implication of multi-walled carbon nanotubes on polymer/graphene composites. Materials & Design (1980-2015), 65, 690–699. https://doi.org/10.1016/j.matdes.2014.09.069
  • Bos, H. L., Müssig, J., & van den Oever, M. J. (2006). Mechanical properties of short-flax-fibre reinforced compounds. Composites Part A: Applied Science and Manufacturing, 37(10), 1591–1604. https://doi.org/10.1016/j.compositesa.2005.10.011
  • Burrola-Núñez, H., Herrera-Franco, P. J., Rodríguez-Félix, D. E., Soto-Valdez, H., & Madera-Santana, T. J. (2018). Surface modification and performance of jute fibers as reinforcement on polymer matrix: an overview. Journal of Natural Fibers, 16(7), 944–960. https://doi.org/10.1080/15440478.2018.1441093
  • Cho, J., Chen, J. Y., & Daniel, I. M. (2007). Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement. Scripta Materialia, 56(8), 685–688. https://doi.org/10.1016/j.scriptamat.2006.12.038
  • Chukov, D., Nematulloev, S., Torokhov, V., Stepashkin, A., Sherif, G., & Tcherdyntsev, V. (2019). Effect of carbon fiber surface modification on their interfacial interaction with polysulfone. Results in Physics, 15, 102634. https://doi.org/10.1016/j.rinp.2019.102634
  • Dixit, P. S., & Verma, P. (2012). The effect of hybridization on mechanical behaviour of coir/sisal/jute fibres reinforced polyester composite material. Research Journal of Chemical Sciences ISSN, 2231, 606X.
  • Dong, M., Zhang, H., Tzounis, L., Santagiuliana, G., Bilotti, E., & Papageorgiou, D. G. (2021). Multifunctional epoxy nanocomposites reinforced by two-dimensional materials: A review. Carbon, 185, 57–81. https://doi.org/10.1016/j.carbon.2021.09.009
  • Dyachkova, T. P., Khan, Y. A., Burakova, E. A., Galunin, E. V., Shigabaeva, G. N., Stolbov, D. N., Titov, G. A., Chapaksov, N. A., & Tkachev, A. G. (2023). Characteristics of epoxy composites containing carbon nanotubes/graphene mixtures. Polymers, 15(6), 1476. https://doi.org/10.3390/polym15061476
  • Emdadi Derabi, M., Sangsefidi, M., & Rahmani, O. (2021). The effect of thickness on the multiwalled carbon nanotubes performance in glass/epoxy composite laminates under dynamic loading. Polymer Composites, 42(11), 5789–5800. https://doi.org/10.1002/pc.26260
  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
  • Girisha, C., & Sanjeevamurthy, G. R. (2012). Tensile properties of natural fiber-reinforced epoxy-hybrid composites. Int J Mod Eng Res, 2(2), 471–474.
  • Han, W., Zhou, J., & Shi, Q. (2023). Research progress on enhancement mechanism and mechanical properties of FRP composites reinforced with graphene and carbon nanotubes. Alexandria Engineering Journal, 64, 541–579. https://doi.org/10.1016/j.aej.2022.09.019
  • John, M. J., & Anandjiwala, R. D. (2008). Recent developments in chemical modification and characterization of natural fiber‐reinforced composites. Polymer Composites, 29(2), 187–207. https://doi.org/10.1002/pc.20461
  • Le, M. T., & Huang, S. C. (2015). Thermal and mechanical behavior of hybrid polymer nanocomposite reinforced with graphene nanoplatelets. Materials (Basel, Switzerland), 8(8), 5526–5536. https://doi.org/10.3390/ma8085262
  • Liu, L., Yu, J., Cheng, L., & Qu, W. (2009). Mechanical properties of poly (butylene succinate)(PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing, 40(5), 669–674. https://doi.org/10.1016/j.compositesa.2009.03.002
  • Liu, L., Yu, J., Cheng, L., & Yang, X. (2009). Biodegradability of poly (butylene succinate)(PBS) composite reinforced with jute fibre. Polymer Degradation and Stability, 94(1), 90–94. https://doi.org/10.1016/j.polymdegradstab.2008.10.013
  • Manjunath, M., Renukappa, N. M., & Suresha, B. (2016). Influence of micro and nanofillers on mechanical properties of pultruded unidirectional glass fiber reinforced epoxy composite systems. Journal of Composite Materials, 50(8), 1109–1121. https://doi.org/10.1177/0021998315588623
  • Merlini, C., Soldi, V., & Barra, G. M. (2011). Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing, 30(8), 833–840. https://doi.org/10.1016/j.polymertesting.2011.08.008
  • Mohanty, A. K., Khan, M. A., & Hinrichsen, G. (2000). Influence of chemical surface modification on the properties of biodegradable jute fabrics—polyester amide composites. Composites Part A: Applied Science and Manufacturing, 31(2), 143–150. https://doi.org/10.1016/S1359-835X(99)00057-3
  • Ramesh, M., Palanikumar, K., & Reddy, K. H. (2013). Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Composites Part B: Engineering, 48, 1–9. https://doi.org/10.1016/j.compositesb.2012.12.004
  • Sapuan, S. M., Leenie, A., Harimi, M., & Beng, Y. K. (2006). Mechanical properties of woven banana fibre reinforced epoxy composites. Materials & Design, 27(8), 689–693. https://doi.org/10.1016/j.matdes.2004.12.016
  • Schneider, J. P., & Karmaker, A. C. (1995). Composites from jute- and kenaf-reinforced polypropylene. ANTEC'95, 2, 2086–2090.
  • Shahinur, S., Hasan, M., Ahsan, Q., Saha, D. K., & Islam, M. S. (2015). Characterization on the properties of jute fiber at different portions. International Journal of Polymer Science, 2015, 1–6. https://doi.org/10.1155/2015/262348
  • Shibata, S., Cao, Y., & Fukumoto, I. (2005). Press forming of short natural fiber-reinforced biodegradable resin: Effects of fiber volume and length on flexural properties. Polymer Testing, 24(8), 1005–1011. https://doi.org/10.1016/j.polymertesting.2005.07.012
  • Song, H., Liu, J., He, K., & Ahmad, W. (2021). A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 15, e00724. https://doi.org/10.1016/j.cscm.2021.e00724
  • Wang, Y., Li, J., & Zhao, D. (1995). Mechanical properties of fiber glass and kevlar woven fabric reinforced composites. Composites Engineering, 5(9), 1159–1175. https://doi.org/10.1016/0961-9526(95)00100-2
  • Yashas Gowda, T. G., Sanjay, M. R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., & Yogesha, B. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1), 1446667. https://doi.org/10.1080/23311916.2018.1446667
  • Yuan, F. P., Ou, R. X., Xie, Y. J., & Wang, Q. W. (2013). Reinforcing effects of modified Kevlar® fiber on the mechanical properties of wood-flour/polypropylene composites. Journal of Forestry Research, 24(1), 149–153. https://doi.org/10.1007/s11676-013-0335-z
  • Zhang, K., Tang, X., Guo, F., Xiao, K., Zheng, D., Ma, Y., Zhao, Q., Wang, F., & Yang, B. (2022). Improved dynamic compressive and electro-thermal properties of hybrid nanocomposite visa physical modification. Nanomaterials, 13(1), 52. https://doi.org/10.3390/nano13010052