211
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

Elevating carbon diffusion: deciphering the interplay of alloy composition and carburizing treatment in low carbon steels

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2345847 | Received 22 Jan 2024, Accepted 16 Apr 2024, Published online: 30 Apr 2024

References

  • Abdulrazzaq Jabbar, D., & Kadhim, Z. D. (2020). Investigation and characterization of coating and carburizing AISI 1011 steel. IOP Conference Series: Materials Science and Engineering, 765(1), 12065. https://doi.org/10.1088/1757-899X/765/1/012065
  • Akbarpour, M. R., Mashhuriazar, A., & Daryani, M. (2021). Experimental and numerical investigation on the effect of the tempcore process parameters on microstructural evolution and mechanical properties of dual-phase steel reinforcing rebars. Metals and Materials International, 27(10), 4074–4083. Oct https://doi.org/10.1007/s12540-020-00840-4
  • An, X., Tian, Y., Wang, B., Jia, T., Wang, H., & Wang, Z. (2021). Prediction of the formation of carbide network on grain boundaries in carburizing of 18CrNiMo7-6 steel alloys. Surface Coatings Technology, 421, 127348. https://doi.org/10.1016/j.surfcoat.2021.127348
  • Boubaker, K. M., Bouhafs, M., & Yacoubi, N. (2003). A quantitative alternative to the Vickers hardness test based on a correlation between thermal diffusivity and hardness—Applications to laser-hardened carburized steel. NDT and E International, 36(8), 547–552. https://doi.org/10.1016/S0963-8695(03)00053-7
  • Brunatto, S. F., Scheuer, C. J., Boromei, I., Martini, C., Ceschini, L., & Cardoso, R. P. (2018). Martensite coarsening in low-temperature plasma carburizing. Surface Coatings Technology, 350, 161–171. https://doi.org/10.1016/j.surfcoat.2018.07.002
  • Chai, J., Pestman, R., Chen, W., Dugulan, A. I., Feng, B., Men, Z., Wang, P., & Hensen, E. J. M. (2021). The role of H2 in Fe carburization by CO in Fischer-Tropsch catalysts. Journal of Catalysis, 400, 93–102. https://doi.org/10.1016/j.jcat.2021.05.027
  • Dey, I., Chandra, S., Saha, R., & Ghosh, S. K. (2018). Effect of Nb micro-alloying on microstructure and properties of thermo-mechanically processed high carbon pearlitic steel. Materials Characterization, 140, 45–54. https://doi.org/10.1016/j.matchar.2018.03.038
  • Eaton-Mckay, J., Yan, K., Zhong, X., Callaghan, M. D., & Jimenez-Melero, E. (2021). Oxidation and carburization behaviour of two type 316H stainless steel casts in simulated AGR gas environment at 550 and 600 °C. Journal of Nuclear Materials, 552, 152999. https://doi.org/10.1016/j.jnucmat.2021.152999
  • Egawa, M., Ueda, N., Nakata, K., Tsujikawa, M., & Tanaka, M. (2010). Effect of additive alloying element on plasma nitriding and carburizing behavior for austenitic stainless steels. Surf. Coatings Technol, 205, S246–S251. https://doi.org/10.1016/j.surfcoat.2010.07.093
  • Ernst, F., Li, D., Kahn, H., Michal, G. M., & Heuer, A. H. (2011). The carbide M7C3 in low-temperature-carburized austenitic stainless steel. Acta Materialia. 59(6), 2268–2276. https://doi.org/10.1016/j.actamat.2010.11.058
  • Gu, X., Michal, G. M., Ernst, F., Kahn, H., & Heuer, A. H. (2014). Concentration-dependent carbon diffusivity in austenite. Metallurgical and Materials Transactions A, 45(9), 3790–3799. https://doi.org/10.1007/s11661-014-2347-5
  • Heintzberger, P. J. (2020). Influence of the temperature of vacuum carburizing on the thickness of the carburized layer and properties of steel parts. Metal Science and Heat Treatment, 62(3-4), 279–284. https://doi.org/10.1007/s11041-020-00549-6
  • Hiremath, P., Sharma, S., M.c, G., Shettar, M., & B.m, G. (2020). Effect of post carburizing treatments on residual stress distribution in plain carbon and alloy steels – A numerical analysis. Journal of Materials Research and Technology, 9(4), 8439–8450. https://doi.org/10.1016/j.jmrt.2020.05.104
  • Jiang, Y., Wu, Q., Wang, Y., Zhao, J., & Gong, J. (2019). Suppression of hydrogen absorption into 304L austenitic stainless steel by surface low temperature gas carburizing treatment. International Journal of Hydrogen Energy, 44(43), 24054–24064. https://doi.org/10.1016/j.ijhydene.2019.07.112
  • Jung, M., Oh, S., & Lee, Y.-K. (2009). Predictive model for the carbon concentration profile of vacuum carburized steels with acetylene. Metals and Materials International, 15(6), 971–975. https://doi.org/10.1007/s12540-009-0971-1
  • Karabelchtchikova, O. (2007). Fundamentals of mass transfer in gas carburizing. [Doctoral Dissertation Submitted to the Faculty of the Worcester Polytechnic Institute]. https://vdocuments.net/gas-carburizing.html?page=1.
  • Khan, D., & Gautham, B. (2018). Integrated modeling of carburizing-quenching-tempering of steel gears for an ICME framework. Integrating Materials and Manufacturing Innovation, 7(1), 28–41. Mar https://doi.org/10.1007/s40192-018-0107-x
  • Khan, D., Shukla, R., & Gautham, B. P. (2019). In silico design of materials and processes: An application of ICME to carburizing steels. Transactions of the Indian Institute of Metals, 72(8), 2179–2185. Aug https://doi.org/10.1007/s12666-018-1534-2
  • Kim, D.-W., Cho, Y.-G., Cho, H.-H., Kim, S.-H., Lee, W.-B., Lee, M.-G., & Han, H. N. (2011). A numerical model for vacuum carburization of an automotive gear ring. Metals and Materials International, 17(6), 885–890. https://doi.org/10.1007/s12540-011-6004-x
  • Kowser, M. A., & Motalleb, M. A. (2015). Effect of quenching medium on hardness of carburized low carbon steel for manufacturing of spindle used in spinning mill. Procedia Engineering. 105, 814–820. https://doi.org/10.1016/j.proeng.2015.05.076
  • Lopez-Garcia, R. D., Medina-Juárez, I., & Maldonado-Reyes, A. (2022). Effect of quenching parameters on distortion phenomena in AISI 4340 steel. Metals (Basel, 12(5), 759. https://doi.org/10.3390/met12050759
  • Ma, W., Sheng, J., Wang, Y., Yan, M., Wu, Y., Qin, S., Zhou, X., & Zhang, Y. (2022). Measurements of Carbon Diffusivity and Surface Transfer Coefficient by Electrical Conductivity Relaxation during Carburization: Experimental Design by Theoretical Analysis. Coatings, 12(12), 1886. https://doi.org/10.3390/coatings12121886
  • Ochsner, A., Gegner, J., & Mishuris, G. (2004). Effect of diffusivity as a function of the method of computation of carbon concentration profiles in steel. Metal Science and Heat Treatment. 46(3/4), 148–151. https://doi.org/10.1023/B:MSAT.0000036667.33197.00
  • Prasanthi, T. N., Sudha, C., Paul, V. T., Bharasi, N. S., Saroja, S., & Vijayalakshmi, M. (2014). Modification in the microstructure of mod. 9Cr-1Mo Ferritic martensitic steel exposed to sodium. Metallurgical and Materials Transactions A, 45(10), 4220–4234. https://doi.org/10.1007/s11661-014-2361-7
  • Rowan, O. K., & Sisson, R. D. (2009). Effect of alloy composition on carburizing performance of steel. Journal of Phase Equilibria and Diffusion, 30(3), 235–241. https://doi.org/10.1007/s11669-009-9500-7
  • Sharghi-Moshtaghin, R., Kahn, H., Ge, Y., Gu, X., Martin, F. J., Natishan, P. M., Rayne, R. J., Michal, G. M., Ernst, F., & Heuer, A. H. (2010). Low-temperature carburization of the Ni-base superalloy IN718: Improvements in surface hardness and crevice corrosion resistance. Metallurgical and Materials Transactions A, 41(8), 2022–2032. https://doi.org/10.1007/s11661-010-0299-y
  • Sulistiyono, B., Irawan, Y. S., Suprapto, A., & Soenoko, R. (2021). The comparison pack carburizing-nitriding SUS 316 with gas type welding grade and ultra high purity. EUREKA: Physics and Engineering, 3, 119–126. https://doi.org/10.21303/2461-4262.2021.001839
  • Trotea, M., Constantinescu, A., Simniceanu, L., & Pană, G. M. (2018). Influence of carburizing time of iron powder samples on the carbon content after gas-carburizing – Sintering process. Applied Mechanics and Materials, 880, 235–240. www.scientific.net/AMM.880.235. https://doi.org/10.4028/www.scientific.net/AMM.880.235
  • Wang, J., Li, Z., Wang, D., Qiu, S., & Ernst, F. (2017). Thermal stability of low-temperature-carburized austenitic stainless steel. Acta Materialia. 128, 235–240. https://doi.org/10.1016/j.actamat.2017.02.018
  • Wei, S., Wang, G., Zhao, X., Zhang, X., & Rong, Y. (2014). Experimental study on vacuum carburizing process for low-carbon alloy steel. Journal of Materials Engineering and Performance, 23(2), 545–550. Feb https://doi.org/10.1007/s11665-013-0762-1
  • Wołowiec-Korecka, E. (2018). Modeling methods for gas quenching, low-pressure carburizing and low-pressure nitriding. Engineering Structures, 177, 489–505. https://doi.org/10.1016/j.engstruct.2018.10.003
  • Wu, D., Ge, Y., Kahn, H., Ernst, F., & Heuer, A. H. (2015). Diffusion profiles after nitrocarburizing austenitic stainless steel. Surface Coatings Technology, 279, 180–185. https://doi.org/10.1016/j.surfcoat.2015.08.048
  • Wu, J., Xue, W., Wang, B., Jin, X., Du, J., & Li, Y. (2014). Characterization of carburized layer on T8 steel fabricated by cathodic plasma electrolysis. Surface Coatings Technology, 245, 9–15. https://doi.org/10.1016/j.surfcoat.2014.02.024
  • Wu, Y., Duan, G. S., Lu, Y., Zhao, X., & Zuo, L. (2011). Effects of magnetic field annealing on carburizing in pure iron. Steel Research International, 82(12), 1404–1407. https://doi.org/10.1002/srin.201100117
  • Yan, F., Yao, J., Chen, B., Yang, Y., Xu, Y., Yan, M., & Zhang, Y. (2021). A novel decarburizing-nitriding treatment of carburized/through-hardened bearing steel towards enhanced nitriding kinetics and microstructure refinement. Coatings, 11(2), 112. https://doi.org/10.3390/coatings11020112
  • Zhang, N., Guo, S., He, G., Jiang, B., Zhou, L., Chen, Y., & Liu, Y. (2022). Failure analysis of the carburized 20MnCr5 gear in fatigue working condition. International Journal of Fatigue, 161, 106938. https://doi.org/10.1016/j.ijfatigue.2022.106938