498
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Productivity, biocontrol and postharvest fruit quality of strawberry cultivar ‘Clery’ using plant growth promoting microorganisms

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2310896 | Received 28 Sep 2023, Accepted 23 Jan 2024, Published online: 05 Feb 2024

References

  • Alijani, Z., Amini, J., Ashengroph, M., Bahramnejad, B., & Mozafari, A. A. (2022). Biocontrol of strawberry anthracnose disease caused by Colletotrichum nymphaeae using Bacillus atrophaeus strain DM6120 with multiple mechanisms. Tropical Plant Pathology, 47(2), 1–13. https://doi.org/10.1007/s40858-021-00477-7
  • Ayala-Zavala, F., Wang, S., Wang, C., & González-Aguilar, G. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. Food Science and Technology, 37(7), 687–695. https://doi.org/10.1016/j.lwt.2004.03.002
  • Badar, M. A., Mehmood, K., Hassan, I., Ahmed, M., Ahmad, I., Ahmad, N., & Hasan, M. U. (2022). Plant growth promothing bacterie (PGPB) enhance growth and yield of strawberry cultivars. Applied Ecology and Environmental Research, 20(3), 2187–2203. https://doi.org/10.15666/aeer/2003_21872203
  • Barakat, R., & Al-Masri, M. I. (2017). Effect of Trichoderma harzianum in combination with fungicides in controlling gray mould disease (Botrytis cinerea) of strawberry. American Journal of Plant Sciences, 8(4), 651–665. https://doi.org/10.4236/ajps.2017.84045
  • Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1573), 1987–1998. https://doi.org/10.1098/rstb.2010.0390
  • Chebotar, V. K., Chizhevskaya, E. P., Vorobyov, N. I., Bobkova, V. V., Pomyaksheva, L. V., Khomyakov, Y. V., & Konovalov, S. N. (2022). The quality and productivity of strawberry (Fragaria × ananassa Duch.) improved by the inoculation of PGPR Bacillus velezensis BS89 in field experiments. Agronomy, 12(11), 2600. https://doi.org/10.3390/agronomy12112600
  • Cho, H. T., & Lee, R. D. (2013). Auxin, the organizer of the hormonal/environmental signals for root hair growth. Frontiers in Plant Science, 4, 448. https://doi.org/10.3389/fpls.2013.00448
  • De Silva, N., Brooks, S., Lumyong, S., & Hyde, K. (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews, 33(2), 133–148. https://doi.org/10.1016/j.fbr.2018.10.001
  • Duran, M., Aday, M., Zorba, N. N., Temizkan, R., Büyükcan, M., & Caner, C. (2016). Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’ to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354–363. https://doi.org/10.1016/j.fbp.2016.01.007
  • Erturk, Y., Ercisli, S., & Cakmakci, R. (2012). Yield and growth response of strawberry to plant growth-promoting rhizobacteria inoculation. Journal of Plant Nutrition, 35(6), 817–826. https://doi.org/10.1080/01904167.2012.663437
  • European Pharmacopoeia 6.0. (2008). Council of Europe. Strasbourg Cedex, pp. 1307–1308.
  • FAOSTAT. (2022). FAOSTAT crops. http://faostat.fao.org/beta/en/#data/QCL
  • Fátima Lopes, D. S., Escribano-Bailón, M. T., Pérez Alonso, J. J., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (2007). Anthocyanin pigmentsin strawberry. LWT - Food Science and Technology, 40(2), 374–382. https://doi.org/10.1016/j.lwt.2005.09.018
  • Feliziani, E., & Romanazzi, G. (2016). Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. Journal of Berry Research, 6(1), 47–63. https://doi.org/10.3233/JBR-150113
  • Gato, I. M. B., Da Silva Oliveira, C. E., Oliveira, T. J. S. S., Jalal, A., Moreira, V. A., Giolo, V. M., Vitória, L. S., De Lima, B. H., Vargas, P. F., & Filho, MCMT. (2023). Nutrition and yield of hydroponic arugula under inoculation of beneficial microorganisms. Horticulture, Environment, and Biotechnology, 64(2), 193–208. https://doi.org/10.1007/s13580-022-00476-w
  • Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition (Burbank, Los Angeles County, Calif.), 28(1), 9–19. https://doi.org/10.1016/j.nut.2011.08.009
  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). John Wiley and Sons.
  • Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., Mirza, M. S., & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5, 617157. https://doi.org/10.3389/fsufs.2021.617157
  • Hang, N. T. T., Oh, SO., Kim, GH., Hur, J. S., & Koh, Y. J. (2005). Bacillus subtilis S1-0210 as a Biocontrol Agentagainst Botrytis cinerea in Strawberries. The Plant Pathology Journal, 21(1), 59-63. https://doi.org/10.5423/PPJ.2005.21.1.059
  • Hilber, W., & Hilber-Bodmer, M. (1998). Genetic basis and monitoring of resistance of Botryotinia fuckeliana to anilinopyrimidines. Plant Disease, 82(5), 496–500. https://doi.org/10.1007/s40858-021-00439-z
  • Helbig, J., & Bochow, H. (2001). Effectiveness of Bacillus subtilis (Isolate 25021) in controlling Botrytis cinerea in strawberry. Journal of Plant Diseases and Protection, 108(6), 545–559.
  • Hutton, D. G., Gomez, A. O., & Mattner, S. W. (2013). Macrophomina phaseolina and its association with strawberry crown rot in Australia. International Journal of Fruit Science, 13(1–2), 149–155. https://doi.org/10.1080/15538362.2012.698143
  • Ipek, M. (2019). Effect of rhizobacteria treatments on nutrient content and organic and amino acid composition in raspberry plants. Turkish Journal of Agriculture and Forestry, 43, 88–95. https://doi.org/10.3906/tar-1804-16
  • Kaymak, S. (2021). Effects of some commercial products on root and crown rot caused by Phytophthora cactorum in apple cultivation. Turkish Journal of Agriculture and Forestry, 46, 19–27. https://doi.org/10.3906/tar-2106-56
  • Khirallah, W., Mouden, N., Selmaoui, K., Achbani, E., Benkirane, R., Touhami, A. O., & Douira, A. (2016). Compatibility of Trichoderma spp. with some fungicides under in vitro conditions. International Journal of Recent Scientific Research, 7(2), 9060–9067. http://webagris.inra.org.ma/doc/achbani02016.pdf.
  • Kim, S. K., Kim, D. S., Kim, D. Y., & Chun, C. (2015). Variation of bioactive compounds content of 14 oriental strawberry cultivars. Food Chemistry, 184, 196–202. https://doi.org/10.1016/j.foodchem.2015.03.060
  • Krüger, E., Josuttis, M., Nestby, R., Toldam-Andersen, T. B., Carlen, C., & Mezzetti, B. (2012). Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality. Journal of Berry Research, 2(3), 143–157. doı: https://doi.org/10.3233/JBR-2012-036
  • Kumar, A., & Dubey, A. (2020). Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research, 24, 337–352. https://doi.org/10.1016/j.jare.2020.04.014
  • Kundan, R., Pant, G., Jadon, N., & Agrawal, P. K. (2015). Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Fertilizers & Pesticides, 06(02), 155. https://doi.org/10.4172/jbfbp.1000155
  • Liu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), 153–160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004
  • Liu, L., Xian, L., Tianyu, L., Xie, Y., Zhuoyang, C., & Fang, P. (2022). Bio-organic fertilizer with Bacillus subtilis F2 promotes strawberry plant growth and changes rhizosphere microbial community. Journal of Soil Science and Plant Nutrition, 22(3), 3045–3055. https://doi.org/10.1007/s42729-022-00866-0
  • Marx, J. (2004). The roots of plant-microbe collaborations. Science (New York, N.Y.), 304(5668), 234–236. https://doi.org/10.1126/science.304.5668.234
  • Meng, Q., Jiang, H., & Hao, J. J. (2016). Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, 98, 18–26. https://doi.org/10.1016/j.biocontrol.2016.03.010
  • Menzel, C. M., Gomez, A., & Smith, L. A. (2016). Control of grey mould and stem-end rot in strawberry plants growing in a subtropical environment. Australasian Plant Pathology, 45(5), 489–498. https://doi.org/10.1007/s13313-016-0440-5
  • Mikiciuk, G., Sas-Paszt, L., Mikiciuk, M., Derkowska, E., Trzciński, P., Głuszek, S., Lisek, A., Wera-Bryl, J., & Rudnicka, I. (2019). Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza, 29(5), 489–501. https://doi.org/10.1007/s00572-019-00905-2
  • Montesinos, E., Francés, J., Badosa, E., & Bonaterra, A. (2015). Post harvest control. In B. Lugtenberg (Ed.), Principles of plant- microbe interactions. Microbes for sustainable agriculture (pp 193–202). Springer.
  • Morais, M. C., Mucha, Â., Ferreira, H., Gonçalves, B., Bacelar, E., & Marques, G. (2019). Comparative study of plant growth promoting bacteria on the physiology, growth and fruit quality of strawberry. Journal of the Science of Food and Agriculture, 99(12), 5341–5349. https://doi.org/10.1002/jsfa.9773
  • Natsheh, B., Abu-Khalaf, N., & Mousa, S. (2015). Strawberry (Fragaria ananassa Duch.) plant productivity quality in relation to soil depth and water requirements. International Journal of Plant Research, 5, 1–6. https://doi.org/10.5923/j.plant.20150501.01
  • Nayak, S. L., Sethi, S., Sharma, R. R., Singh, D., & Singh, S. (2019). Improved control on decay and postharvest quality deterioration of strawberry by microbial antagonists. Indian Journal of Horticulture, 76(3), 502–507. https://doi.org/10.5958/0974-0112.2019.00079.3
  • Oregel-Zamudio, E., Angoa-Pérez, V., Oyoque-Salcedo, G., Aguilar-González, C., & Mena-Violante, H. (2017). Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Scientia Horticulturae, 214, 273–279. https://doi.org/10.1016/j.scienta.2016.11.038
  • Paliwoda, D., Mikiciuk, G., Mikiciuk, M., Kisiel, A., Sas-Paszt, L., & Miller, T. (2002). Effects of rhizosphere bacteria on strawberry plants (Fragaria × ananassa Duch.) under water deficit. International Journal of Molecular Sciences, 23(18), 10449. https://doi.org/10.3390/ijms231810449
  • Rahman, M., Sabir, S., Mukta, J. A., Khan, M. A., Mohi-Ud-Din, M., Miah, G., Rahman, M., & Islam, T. (2018). Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Scientific Reports, 8(1), 2504. https://doi.org/10.1038/s41598-018-20235-1
  • Rico, D., Barcenilla, B., Meabe, A., González, C., & Martín-Diana, A. B. (2019). Mechanical properties and quality parameters of Chitosan-edible algae (Palmaria palmata) on eady-to-eat strawberries. Journal of the Science of Food and Agriculture, 99(6), 2910–2921. https://doi.org/10.1002/jsfa.9504
  • Robinson-Boyer, L., Jeger, M. J., Xiang-Ming, X., & Jeffries, P. (2009). Management of strawberry grey mould using mixtures of biocontrol agents with different mechanisms of action. Biocontrol Science and Technology, 19(10), 1051–1065. https://doi.org/10.1080/09583150903289105
  • Schmitzer, V., Stampar, F., Turk, A., Jakopic, J., Hudina, M., Veberic, R., & Smrke, T. (2023). Before or after planting? Mycorrhizal and bacterial biostimulants and extracts in ıntense strawberry (Fragaria × ananassa Duch.) production. Horticulturae, 9(7), 769. https://doi.org/10.3390/horticulturae9070769
  • Shen, H., Wei, Y., Wang, X., Xu, C., & Shao, X. (2019). The marine yeast Sporidiobolus pararoseus ZMY-1 has antagonistic properties against Botrytis cinerea in vitro and in strawberry fruit. Postharvest Biology and Technology, 150, 1–8. https://doi.org/10.1016/j.postharvbio.2018.12.009
  • Siddiqui, Y., Munusamy, U., Naidu, Y., & Ahmad, K. (2020). Integrated effect of plant growth-promoting compost and NPK fertilizer on nutrient uptake, phenolic content, and antioxidant properties of Orthosiphon stamineus and Cosmos caudatus. Horticulture, Environment, and Biotechnology, 61(6), 1051–1062. https://doi.org/10.1007/s13580-020-00277-z
  • Simkova, K., Veberic, R., Hudina, M., Grohar, M. C., Ivancic, T., Smrke, T., Pelacci, M., & Jakopic, J. (2023). Variability in ‘Capri’ everbearing strawberry quality during a harvest season. Foods (Basel, Switzerland), 12(6), 1349. https://doi.org/10.3390/foods12061349
  • Tanović, B., Hrustic, J., Mihajlovic, M., Grahovac, M., Delibasic, G., & Vuksa, P. (2011). Suppression of Botrytis cinerea and the problem of resistance to fungicides. Journal of Pesticides & Phytomedicine, 26(2), 99–110. https://doi.org/10.2298/PIF1102099T
  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq, B. A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability: A review. Molecules (Basel, Switzerland), 21(5), 573. https://doi.org/10.3390/molecules21050573
  • Virgen-Ortiz, J., Morales-Ventura, J., Colín-Chávez, C., Esquivel-Chávez, F., Vargas-Arispuro, I., Aispuro-Hernández, E., & Martínez-Téllez, M. (2019). Postharvest application of pectic-oligosaccharides on quality attributes activities, of defense-related enzymes, and anthocyanin accumulation in strawberry. Journal of the Science of Food and Agriculture, 100(5), 1949–1961. https://doi.org/10.1002/jsfa.10207
  • Waterman, P., & Mole, S. (1994). Analysis of phenolic plant metabolites. Blackwell Scientific Publication.
  • Weber, N., Schmitzer, V., Jakopic, J., & Stampar, F. (2018). First fruit in season: Seaweed extract and silicon advance organic strawberry (Fragaria × ananassa Duch.) fruit formation and yield. Scientia Horticulturae, 242, 103–109. https://doi.org/10.1016/j.scienta.2018.07.038
  • Xiangming, X., Robinson, L., Jeger, M., & Jeffries, P. (2010). Using combinations of biocontrol agents to control Botrytis cinerea on strawberry leaves under fluctuating temperatures. Biocontrol Science and Technology, 20(4), 359–373. https://doi.org/10.1080/09583150903528114
  • Zahir, Z. A., Arshad, M., & Frankenberger, W. T. (2004). Advances in agronomy. Elsevere Science.